558 research outputs found

    Capillary instability in a two-component Bose-Einstein condensate

    Full text link
    Capillary instability and the resulting dynamics in an immiscible two-component Bose-Einstein condensate are investigated using the mean-field and Bogoliubov analyses. A long, cylindrical condensate surrounded by the other component is dynamically unstable against breakup into droplets due to the interfacial tension arising from the quantum pressure and interactions. A heteronuclear system confined in a cigar-shaped trap is proposed for realizing this phenomenon experimentally.Comment: 7 pages, 6 figure

    The hydraulic bump: The surface signature of a plunging jet

    Get PDF
    When a falling jet of fluid strikes a horizontal fluid layer, a hydraulic jump arises downstream of the point of impact provided a critical flow rate is exceeded. We here examine a phenomenon that arises below this jump threshold, a circular deflection of relatively small amplitude on the free surface, that we call the hydraulic bump. The form of the circular bump can be simply understood in terms of the underlying vortex structure and its height simply deduced with Bernoulli arguments. As the incoming flux increases, a breaking of axial symmetry leads to polygonal hydraulic bumps. The relation between this polygonal instability and that arising in the hydraulic jump is discussed. The coexistence of hydraulic jumps and bumps can give rise to striking nested structures with polygonal jumps bound within polygonal bumps. The absence of a pronounced surface signature on the hydraulic bump indicates the dominant influence of the subsurface vorticity on its instability

    Stability of viscous long liquid filaments

    Get PDF
    We study the collapse of an axisymmetric liquid filament both analytically and by means of a numerical model. The liquid filament, also known as ligament, may either collapse stably into a single droplet or break up into multiple droplets. The dynamics of the filament are governed by the viscosity and the aspect ratio, and the initial perturbations of its surface. We find that the instability of long viscous filaments can be completely explained by the Rayleigh-Plateau instability, whereas a low viscous filament can also break up due to end pinching. We analytically derive the transition between stable collapse and breakup in the Ohnesorge number versus aspect ratio phase space. Our result is confirmed by numerical simulations based on the slender jet approximation and explains recent experimental findings by Castrejon-Pita et al., PRL 108, 074506 (2012).Comment: 7 page

    Linear stability analysis of capillary instabilities for concentric cylindrical shells

    Full text link
    Motivated by complex multi-fluid geometries currently being explored in fibre-device manufacturing, we study capillary instabilities in concentric cylindrical flows of NN fluids with arbitrary viscosities, thicknesses, densities, and surface tensions in both the Stokes regime and for the full Navier--Stokes problem. Generalizing previous work by Tomotika (N=2), Stone & Brenner (N=3, equal viscosities) and others, we present a full linear stability analysis of the growth modes and rates, reducing the system to a linear generalized eigenproblem in the Stokes case. Furthermore, we demonstrate by Plateau-style geometrical arguments that only axisymmetric instabilities need be considered. We show that the N=3 case is already sufficient to obtain several interesting phenomena: limiting cases of thin shells or low shell viscosity that reduce to N=2 problems, and a system with competing breakup processes at very different length scales. The latter is demonstrated with full 3-dimensional Stokes-flow simulations. Many N>3N > 3 cases remain to be explored, and as a first step we discuss two illustrative N→∞N \to \infty cases, an alternating-layer structure and a geometry with a continuously varying viscosity

    Responses of track and field coaches to athletes with eating problems

    Get PDF
    This study aimed to explore how track and field coaches respond to athletes with eating problems. Eleven experienced coaches participated in semi-structured interviews exploring their responses to, and challenges faced when, working with athletes with eating problems. The analysis revealed three themes relating to the strategies employed by coaches. The first theme indicated a supportive approach, where coaches were proactive in seeking support and in reducing training at the early stages of an eating problem. The second theme outlined an avoidant approach, characterized by coach reluctance to be involved in managing eating problems, and a lack of confidence in their knowledge of eating disorders. The third theme involved a confrontational approach, where coaches employed strict rules and engaged in coercion to persuade athletes to seek treatment. All of the coaches reported facing challenges in persuading athletes to seek treatment and were frustrated by the lack of available support. The study highlights the importance of providing resources and support services where coaches can seek advice. Coach-education packages can utilize the findings to highlight the strengths and limitations of different coach strategies, and to reinforce the importance of their role in identification and intervention when eating problems in athletes are suspected

    Rayleigh and depinning instabilities of forced liquid ridges on heterogeneous substrates

    Full text link
    Depinning of two-dimensional liquid ridges and three-dimensional drops on an inclined substrate is studied within the lubrication approximation. The structures are pinned to wetting heterogeneities arising from variations of the strength of the short-range polar contribution to the disjoining pressure. The case of a periodic array of hydrophobic stripes transverse to the slope is studied in detail using a combination of direct numerical simulation and branch-following techniques. Under appropriate conditions the ridges may either depin and slide downslope as the slope is increased, or first breakup into drops via a transverse instability, prior to depinning. The different transition scenarios are examined together with the stability properties of the different possible states of the system.Comment: Physics synopsis link: http://physics.aps.org/synopsis-for/10.1103/PhysRevE.83.01630

    Stochastic Automata Networks: Product Forms and Iterative Solutions

    Get PDF
    This article presents a global overview of recent results concerning stochastic automata networks. Among the topics considered is the formalism of an extended tensor algebra, the rigorous definition of a Markovian generator in the form of a descriptor, sufficient conditions for product form, the complexity of the vector-descriptor multiplication, the optimization of this product and some numerical results. The whole is illustrated by numerous typical examples

    NMR study of slowly exchanging protons in yeast tRNAAsp

    Get PDF
    We have monitored the exchange of imino and amino protons by NMR after quick transfer of yeast tRNAAsp in 2H2O solvent. When the concentration of exchange-catalyzing buffer is not too high, one imino proton exchanges considerably more slowly than any other (e.g., 100 hr versus 4 hr for the second-slowest imino proton at 18°C in 15 mM Mg). This provides excellent conditions for identification, by the nuclear Overhauser effect, of the slowest exchanging proton, which we show to be the imino proton of the U-8. A-14 reverse Hoogsteen tertiary-structure base pair; other slowly exchanging protons are identified as imino protons from A.U-11 and G.ψ-13. In preliminary experiments, we find that the exchange of these protons is catalyzed by cacodylate or Tris buffer. The lifetimes of two other imino protons, ca. 10 min at 28°C, are buffer independent. Slowly exchanging amino protons have also been observed. Correlation with the exchange of the uracil-8 imino proton suggests that they may be from adenine-14
    • …
    corecore