15 research outputs found

    Large magnetoresistances and non-Ohmic conductivity in EuWO[1+x]N[2-x]

    Get PDF
    The magnetic field and voltage dependent electronic transport properties of EuWO[1+x]N[2-x] ceramics are reported. Large negative magnetoresistances are observed at low temperatures, up to 70% in the least doped (x=0.09) material. Non-Ohmic conduction emerges below the 12 K Curie transition. This is attributed to a microstructure of ferromagnetic conducting and antiferromagnetic insulating regions resulting from small spatial fluctuations in the chemical doping

    Incommensurate spin order in the metallic perovskite MnVO3

    Get PDF
    Incommensurate Mn spin order has been discovered in the perovskite MnVO3 containing localized 3d5 Mn2+ and itinerant 3d1 V4+ states. This phase has a distorted Pnma crystal structure (a = 5.2741(6) Å, b = 7.4100(11) Å, and c = 5.1184(8) Å at 300 K) and is metallic at temperatures of 2-300 K and at pressures of up to 67 kbar. Neutron scattering reveals a (0.29 0 0) magnetic vector below the 46 K spin ordering transition, and both helical and spin density wave orderings are consistent with the diffraction intensities. Electronic structure calculations show large exchange splittings of the Mn and V 3d bands, and (kx 0 0) crossings of the Fermi energy by spin up and down V 3d bands may give rise to Ruderman-Kittel-Kasuya-Yosida coupling of Mn moments, in addition to their superexchange interactions. © 2011 American Physical Society

    Orbital Molecules in the New Spinel GaV<sub>2</sub>O<sub>4</sub>

    Full text link
    The structures and properties of vanadium oxides are often related to the formation of molecule-like clusters of vanadium cations through direct V–V bonding. GaV<sub>2</sub>O<sub>4</sub>, a new vanadium spinel, was synthesized. Powder diffraction and X-ray total scattering studies, complemented by magnetization and resistivity measurements, reveal that the low-temperature phase of this material is structurally distorted and features ordered pairs of three- and four-atom vanadium clusters. These clusters persist into a disordered cubic phase above the charge-ordering transition at <i>T</i><sub>CO</sub> = 415 K. Furthermore, quasi-elastic neutron scattering indicates that the disordered clusters remain well-defined and static to 1100 K

    Cation-Size-Mismatch Tuning of Photoluminescence in Oxynitride Phosphors

    Full text link
    Red or yellow phosphors excited by a blue light-emitting diode are an efficient source of white light for everyday applications. Many solid oxides and nitrides, particularly silicon nitride-based materials such as M<sub>2</sub>Si<sub>5</sub>N<sub>8</sub> and MSi<sub>2</sub>O<sub>2</sub>N<sub>2</sub> (M = Ca, Sr, Ba), CaAlSiN<sub>3</sub>, and SiAlON, are useful phosphor hosts with good thermal stabilities. Both oxide/nitride and various cation substitutions are commonly used to shift the emission spectrum and optimize luminescent properties, but the underlying mechanisms are not always clear. Here we show that size-mismatch between host and dopant cations tunes photoluminescence shifts systematically in M<sub>1.95</sub>Eu<sub>0.05</sub>Si<sub>5–<i>x</i></sub>Al<sub><i>x</i></sub>N<sub>8–<i>x</i></sub>O<sub><i>x</i></sub> lattices, leading to a red shift when the M = Ba and Sr host cations are larger than the Eu<sup>2+</sup> dopant, but a blue shift when the M = Ca host is smaller. Size-mismatch tuning of thermal quenching is also observed. A local anion clustering mechanism in which Eu<sup>2+</sup> gains excess nitride coordination in the M = Ba and Sr structures, but excess oxide in the Ca analogues, is proposed for these mismatch effects. This mechanism is predicted to be general to oxynitride materials and will be useful in tuning optical and other properties that are sensitive to local coordination environments

    Electronic tuning of two metals and colossal magnetoresistances in EuWO1+ xN2- x perovskites

    Full text link
    A remarkable electronic flexibility and colossal magnetoresistance effects have been discovered in the perovskite oxynitrides EuWO1+xN 2-x. Ammonolysis of Eu2W2O9 yields scheelite-type intermediates EuWO4-yNy with a very small degree of nitride substitution (y = 0.04) and then EuWO1+xN 2-x perovskites that show a wide range of compositions -0.16 0 materials have chemical reduction of W (electron doping of the W:5d band). Hence, both the Eu and W oxidation states and the hole/electron doping are tuned by varying the O/N ratio. EuWO1+xN2-x phases order ferromagnetically at 12 K, and colossal magnetoresistances (CMR) are observed in the least doped (x = -0.04) sample. Distinct mechanisms for the hole and electron magnetotransport regimes are identified. © 2010 American Chemical Society

    Robust Dirac-Cone Band Structure in the Molecular Kagome Compound (EDT-TTF-CONH<sub>2</sub>)<sub>6</sub>[Re<sub>6</sub>Se<sub>8</sub>(CN)<sub>6</sub>]

    Full text link
    (EDT-TTF-CONH<sub>2</sub>)<sub>6</sub>[Re<sub>6</sub>Se<sub>8</sub>(CN)<sub>6</sub>] is a molecular solid with <i>R</i>3Ì… space group symmetry and has the remarkable feature of exhibiting hybrid donor layers with a kagome topology which sustain metallic conductivity. We report a detailed study of the structural evolution of the system as a function of temperature and pressure. This rhombohedral phase is maintained on cooling down to 220 K or up to 0.7 GPa pressure, beyond which a symmetry-breaking transition to a triclinic <i>P</i>1Ì… phase drives a metal to insulator transition. Band structures calculated from the structural data lead to a clear description of the effects of temperature and pressure on the structural and electronic properties of this system. Linear energy dispersion is calculated at the zero-gap Fermi level where valence and conduction bands touch for the rhombohedral phase. (EDT-TTF-CONH<sub>2</sub>)<sub>6</sub>[Re<sub>6</sub>Se<sub>8</sub>(CN)<sub>6</sub>] thus exhibits a regular (right circular) Dirac-cone like that of graphene at the Fermi level, which has not been reported previously in a molecular solid. The Dirac-cone is robust over the stability region of the rhombohedral phase, and may result in exotic electronic transport and optical properties

    Robust Dirac-Cone Band Structure in the Molecular Kagome Compound (EDT-TTF-CONH<sub>2</sub>)<sub>6</sub>[Re<sub>6</sub>Se<sub>8</sub>(CN)<sub>6</sub>]

    Full text link
    (EDT-TTF-CONH<sub>2</sub>)<sub>6</sub>[Re<sub>6</sub>Se<sub>8</sub>(CN)<sub>6</sub>] is a molecular solid with <i>R</i>3Ì… space group symmetry and has the remarkable feature of exhibiting hybrid donor layers with a kagome topology which sustain metallic conductivity. We report a detailed study of the structural evolution of the system as a function of temperature and pressure. This rhombohedral phase is maintained on cooling down to 220 K or up to 0.7 GPa pressure, beyond which a symmetry-breaking transition to a triclinic <i>P</i>1Ì… phase drives a metal to insulator transition. Band structures calculated from the structural data lead to a clear description of the effects of temperature and pressure on the structural and electronic properties of this system. Linear energy dispersion is calculated at the zero-gap Fermi level where valence and conduction bands touch for the rhombohedral phase. (EDT-TTF-CONH<sub>2</sub>)<sub>6</sub>[Re<sub>6</sub>Se<sub>8</sub>(CN)<sub>6</sub>] thus exhibits a regular (right circular) Dirac-cone like that of graphene at the Fermi level, which has not been reported previously in a molecular solid. The Dirac-cone is robust over the stability region of the rhombohedral phase, and may result in exotic electronic transport and optical properties

    Robust Dirac-Cone Band Structure in the Molecular Kagome Compound (EDT-TTF-CONH<sub>2</sub>)<sub>6</sub>[Re<sub>6</sub>Se<sub>8</sub>(CN)<sub>6</sub>]

    Full text link
    (EDT-TTF-CONH<sub>2</sub>)<sub>6</sub>[Re<sub>6</sub>Se<sub>8</sub>(CN)<sub>6</sub>] is a molecular solid with <i>R</i>3Ì… space group symmetry and has the remarkable feature of exhibiting hybrid donor layers with a kagome topology which sustain metallic conductivity. We report a detailed study of the structural evolution of the system as a function of temperature and pressure. This rhombohedral phase is maintained on cooling down to 220 K or up to 0.7 GPa pressure, beyond which a symmetry-breaking transition to a triclinic <i>P</i>1Ì… phase drives a metal to insulator transition. Band structures calculated from the structural data lead to a clear description of the effects of temperature and pressure on the structural and electronic properties of this system. Linear energy dispersion is calculated at the zero-gap Fermi level where valence and conduction bands touch for the rhombohedral phase. (EDT-TTF-CONH<sub>2</sub>)<sub>6</sub>[Re<sub>6</sub>Se<sub>8</sub>(CN)<sub>6</sub>] thus exhibits a regular (right circular) Dirac-cone like that of graphene at the Fermi level, which has not been reported previously in a molecular solid. The Dirac-cone is robust over the stability region of the rhombohedral phase, and may result in exotic electronic transport and optical properties

    Robust Dirac-Cone Band Structure in the Molecular Kagome Compound (EDT-TTF-CONH<sub>2</sub>)<sub>6</sub>[Re<sub>6</sub>Se<sub>8</sub>(CN)<sub>6</sub>]

    Full text link
    (EDT-TTF-CONH<sub>2</sub>)<sub>6</sub>[Re<sub>6</sub>Se<sub>8</sub>(CN)<sub>6</sub>] is a molecular solid with <i>R</i>3Ì… space group symmetry and has the remarkable feature of exhibiting hybrid donor layers with a kagome topology which sustain metallic conductivity. We report a detailed study of the structural evolution of the system as a function of temperature and pressure. This rhombohedral phase is maintained on cooling down to 220 K or up to 0.7 GPa pressure, beyond which a symmetry-breaking transition to a triclinic <i>P</i>1Ì… phase drives a metal to insulator transition. Band structures calculated from the structural data lead to a clear description of the effects of temperature and pressure on the structural and electronic properties of this system. Linear energy dispersion is calculated at the zero-gap Fermi level where valence and conduction bands touch for the rhombohedral phase. (EDT-TTF-CONH<sub>2</sub>)<sub>6</sub>[Re<sub>6</sub>Se<sub>8</sub>(CN)<sub>6</sub>] thus exhibits a regular (right circular) Dirac-cone like that of graphene at the Fermi level, which has not been reported previously in a molecular solid. The Dirac-cone is robust over the stability region of the rhombohedral phase, and may result in exotic electronic transport and optical properties

    Robust Dirac-Cone Band Structure in the Molecular Kagome Compound (EDT-TTF-CONH<sub>2</sub>)<sub>6</sub>[Re<sub>6</sub>Se<sub>8</sub>(CN)<sub>6</sub>]

    Full text link
    (EDT-TTF-CONH<sub>2</sub>)<sub>6</sub>[Re<sub>6</sub>Se<sub>8</sub>(CN)<sub>6</sub>] is a molecular solid with <i>R</i>3Ì… space group symmetry and has the remarkable feature of exhibiting hybrid donor layers with a kagome topology which sustain metallic conductivity. We report a detailed study of the structural evolution of the system as a function of temperature and pressure. This rhombohedral phase is maintained on cooling down to 220 K or up to 0.7 GPa pressure, beyond which a symmetry-breaking transition to a triclinic <i>P</i>1Ì… phase drives a metal to insulator transition. Band structures calculated from the structural data lead to a clear description of the effects of temperature and pressure on the structural and electronic properties of this system. Linear energy dispersion is calculated at the zero-gap Fermi level where valence and conduction bands touch for the rhombohedral phase. (EDT-TTF-CONH<sub>2</sub>)<sub>6</sub>[Re<sub>6</sub>Se<sub>8</sub>(CN)<sub>6</sub>] thus exhibits a regular (right circular) Dirac-cone like that of graphene at the Fermi level, which has not been reported previously in a molecular solid. The Dirac-cone is robust over the stability region of the rhombohedral phase, and may result in exotic electronic transport and optical properties
    corecore