64,046 research outputs found

    The Spin Stiffness and the Transverse Susceptibility of the Half-filled Hubbard Model

    Full text link
    The T=0T=0 spin stiffness ρs\rho _{s} and the transverse susceptibility χ\chi _{\perp } of the square lattice half-filled Hubbard model are calculated as a function of the Hubbard parameter ratio U/tU/t by series expansions around the Ising limit. We find that the calculated spin-stiffness, transverse susceptibility, and sublattice magnetization for the Hubbard model smoothly approach the Heisenberg values for large U/tU/t. The results are compared for different U/tU/t with RPA and other numerical studies.Comment: 9 Revtex pages, 3 Postscript figures, Europhys. Lett. in pres

    Deformations and quasiparticle spectra of nuclei in the nobelium region

    Full text link
    We have performed self-consistent Skyrme Hartree-Fock-Bogolyubov calculations for nuclei close to 254^{254}No. Self-consistent deformations, including β2,4,6,8\beta_{2,4,6,8} as functions of the rotational frequency, were determined for even-even nuclei 246,248,250^{246,248,250}Fm, 252,254^{252,254}No, and 256^{256}Rf. The quasiparticle spectra for N=151 isotones and Z=99 isotopes were calculated and compared with experimental data and the results of Woods-Saxon calculations. We found that our calculations give high-order deformations similar to those obtained for the Woods-Saxon potential, and that the experimental quasiparticle energies are reasonably well reproduced.Comment: 6 pages, 2 figures; ICFN5 conference proceeding

    Rotational properties of nuclei around 254^{254}No investigated using a spectroscopic-quality Skyrme energy density functional

    Full text link
    Nuclei in the Z100Z\approx100 mass region represent the heaviest systems where detailed spectroscopic information is experimentally available. Although microscopic-macroscopic and self-consistent models have achieved great success in describing the data in this mass region, a fully satisfying precise theoretical description is still missing. By using fine-tuned parametrizations of the energy density functionals, the present work aims at an improved description of the single-particle properties and rotational bands in the nobelium region. Such locally optimized parameterizations may have better properties when extrapolating towards the superheavy region. Skyrme-Hartree-Fock-Bogolyubov and Lipkin-Nogami methods were used to calculate the quasiparticle energies and rotational bands of nuclei in the nobelium region. Starting from the most recent Skyrme parametrization, UNEDF1, the spin-orbit coupling constants and pairing strengths have been tuned, so as to achieve a better agreement with the excitation spectra and odd-even mass differences in 251^{251}Cf and 249^{249}Bk. The quasiparticle properties of 251^{251}Cf and 249^{249}Bk were very well reproduced. At the same time, crucial deformed neutron and proton shell gaps open up at N=152N=152 and Z=100Z=100, respectively. Rotational bands in Fm, No, and Rf isotopes, where experimental data are available, were also fairly well described. To help future improvements towards a more precise description, small deficiencies of the approach were carefully identified. In the Z100Z\approx100 mass region, larger spin-orbit strengths than those from global adjustments lead to improved agreement with data. Puzzling effects of particle-number restoration on the calculated moment of inertia, at odds with the experimental behaviour, require further scrutiny.Comment: 9 pages, 10 figures; to be published in Physical Review

    Novel thick-foam ferroelectret with engineered voids for energy harvesting applications

    Get PDF
    This work reports a novel thick-foam ferroelectret which is designed and engineered for energy harvesting applications. We fabricated this ferroelectret foam by mixing a chemical blowing agent with a polymer solution, then used heat treatment to activate the agent and create voids in the polymer foam. The dimensions of the foam, the density and size of voids can be well controlled in the fabrication process. Therefore, this ferroelectret can be engineered into optimized structure for energy harvesting applications

    Niobium uptake and release by bacterial ferric ion binding protein

    Get PDF
    Ferric ion binding proteins (Fbps) transport FeIII across the periplasm and are vital for the virulence of many Gram negative bacteria. Iron(III) is tightly bound in a hinged binding cleft with octahedral coordination geometry involving binding to protein side chains (including tyrosinate residues) together with a synergistic anion such as phosphate. Niobium compounds are of interest for their potential biological activity, which has been little explored. We have studied the binding of cyclopentadienyl and nitrilotriacetato NbV complexes to the Fbp from Neisseria gonorrhoeae by UV-vis spectroscopy, chromatography, ICP-OES, mass spectrometry, and Nb K-edge X-ray absorption spectroscopy. These data suggest that NbV binds strongly to Fbp and that a dinuclear NbV centre can be readily accommodated in the interdomain binding cleft. The possibility of designing niobium-based antibiotics which block iron uptake by pathogenic bacteria is discussed

    PDMS/PVA composite ferroelectret for improved energy harvesting performance

    Get PDF
    This paper address the PDMS ferroelectret discharge issue for improved long- term energy harvesting performance. The PDMS/PVA ferroelectret is fabricated using a 3D-printed plastic mould technology and a functional PVA composite layer is introduced. The PDMS/PVA composite ferroelectret achieved 80% piezoelectric coefficient d33 remaining, compared with 40% without the proposed layer over 72 hours. Further, the retained percentage of output voltage is about 73% over 72 hours

    Modelling thermomechanical behaviour of Cr-Mo-V steel

    Get PDF
    This paper presents a mechanism-based approach for modelling the thermomechanical behaviour of a Cr-Mo-V steel. A set of unified viscoplastic constitutive equations were employed to model dislocation density, recrystallisation and grain size during deformation. The evolution of dislocation density accounts for the build-up of dislocations due to plastic strain, the static and dynamic recovery and the effect of recrystallisation. Recrystallisation occurs when a critical dislocation density is reached after an incubation time, and grain size becomes smaller after such event. Gleeble compression tests were used to obtain Stress-strain curves and evaluate the microstructural evolution at different temperature and strain rate, and the material constants for the model were determined from the experimental data. Copyright © 2010 MS&T10®
    corecore