64,046 research outputs found
The Spin Stiffness and the Transverse Susceptibility of the Half-filled Hubbard Model
The spin stiffness and the transverse susceptibility of the square lattice half-filled Hubbard model are calculated as a
function of the Hubbard parameter ratio by series expansions around the
Ising limit. We find that the calculated spin-stiffness, transverse
susceptibility, and sublattice magnetization for the Hubbard model smoothly
approach the Heisenberg values for large . The results are compared for
different with RPA and other numerical studies.Comment: 9 Revtex pages, 3 Postscript figures, Europhys. Lett. in pres
Deformations and quasiparticle spectra of nuclei in the nobelium region
We have performed self-consistent Skyrme Hartree-Fock-Bogolyubov calculations
for nuclei close to No. Self-consistent deformations, including
as functions of the rotational frequency, were determined for
even-even nuclei Fm, No, and Rf. The
quasiparticle spectra for N=151 isotones and Z=99 isotopes were calculated and
compared with experimental data and the results of Woods-Saxon calculations. We
found that our calculations give high-order deformations similar to those
obtained for the Woods-Saxon potential, and that the experimental quasiparticle
energies are reasonably well reproduced.Comment: 6 pages, 2 figures; ICFN5 conference proceeding
Rotational properties of nuclei around No investigated using a spectroscopic-quality Skyrme energy density functional
Nuclei in the mass region represent the heaviest systems where
detailed spectroscopic information is experimentally available. Although
microscopic-macroscopic and self-consistent models have achieved great success
in describing the data in this mass region, a fully satisfying precise
theoretical description is still missing.
By using fine-tuned parametrizations of the energy density functionals, the
present work aims at an improved description of the single-particle properties
and rotational bands in the nobelium region. Such locally optimized
parameterizations may have better properties when extrapolating towards the
superheavy region.
Skyrme-Hartree-Fock-Bogolyubov and Lipkin-Nogami methods were used to
calculate the quasiparticle energies and rotational bands of nuclei in the
nobelium region. Starting from the most recent Skyrme parametrization, UNEDF1,
the spin-orbit coupling constants and pairing strengths have been tuned, so as
to achieve a better agreement with the excitation spectra and odd-even mass
differences in Cf and Bk.
The quasiparticle properties of Cf and Bk were very well
reproduced. At the same time, crucial deformed neutron and proton shell gaps
open up at and , respectively. Rotational bands in Fm, No, and
Rf isotopes, where experimental data are available, were also fairly well
described. To help future improvements towards a more precise description,
small deficiencies of the approach were carefully identified.
In the mass region, larger spin-orbit strengths than those from
global adjustments lead to improved agreement with data. Puzzling effects of
particle-number restoration on the calculated moment of inertia, at odds with
the experimental behaviour, require further scrutiny.Comment: 9 pages, 10 figures; to be published in Physical Review
Novel thick-foam ferroelectret with engineered voids for energy harvesting applications
This work reports a novel thick-foam ferroelectret which is designed and engineered for energy harvesting applications. We fabricated this ferroelectret foam by mixing a chemical blowing agent with a polymer solution, then used heat treatment to activate the agent and create voids in the polymer foam. The dimensions of the foam, the density and size of voids can be well controlled in the fabrication process. Therefore, this ferroelectret can be engineered into optimized structure for energy harvesting applications
Niobium uptake and release by bacterial ferric ion binding protein
Ferric ion binding proteins (Fbps) transport FeIII across the periplasm and are vital for the virulence of many Gram negative
bacteria. Iron(III) is tightly bound in a hinged binding cleft with octahedral coordination geometry involving binding to protein
side chains (including tyrosinate residues) together with a synergistic anion such as phosphate. Niobium compounds are of
interest for their potential biological activity, which has been little explored. We have studied the binding of cyclopentadienyl
and nitrilotriacetato NbV complexes to the Fbp from Neisseria gonorrhoeae by UV-vis spectroscopy, chromatography, ICP-OES,
mass spectrometry, and Nb K-edge X-ray absorption spectroscopy. These data suggest that NbV binds strongly to Fbp and that a
dinuclear NbV centre can be readily accommodated in the interdomain binding cleft. The possibility of designing niobium-based
antibiotics which block iron uptake by pathogenic bacteria is discussed
PDMS/PVA composite ferroelectret for improved energy harvesting performance
This paper address the PDMS ferroelectret discharge issue for improved long- term energy harvesting performance. The PDMS/PVA ferroelectret is fabricated using a 3D-printed plastic mould technology and a functional PVA composite layer is introduced. The PDMS/PVA composite ferroelectret achieved 80% piezoelectric coefficient d33 remaining, compared with 40% without the proposed layer over 72 hours. Further, the retained percentage of output voltage is about 73% over 72 hours
Modelling thermomechanical behaviour of Cr-Mo-V steel
This paper presents a mechanism-based approach for modelling the thermomechanical behaviour of a Cr-Mo-V steel. A set of unified viscoplastic constitutive equations were employed to model dislocation density, recrystallisation and grain size during deformation. The evolution of dislocation density accounts for the build-up of dislocations due to plastic strain, the static and dynamic recovery and the effect of recrystallisation. Recrystallisation occurs when a critical dislocation density is reached after an incubation time, and grain size becomes smaller after such event. Gleeble compression tests were used to obtain Stress-strain curves and evaluate the microstructural evolution at different temperature and strain rate, and the material constants for the model were determined from the experimental data. Copyright © 2010 MS&T10®
- …