5,396 research outputs found
Thermodynamics of toroidal black holes
The thermodynamical properties of toroidal black holes in the grand canonical
ensemble are investigated using York's formalism. The black hole is enclosed in
a cavity with finite radius where the temperature and electrostatic potential
are fixed. The boundary conditions allow one to compute the relevant
thermodynamical quantities, e.g. thermal energy, entropy and specific heat.
This black hole is thermodynamically stable and dominates the grand partition
function. This means that there is no phase transition, as the one encountered
for spherical black holes.Comment: 11 pages, 2 eps figures, revte
Stationary Black Holes in a Generalized Three-Dimensional Theory of Gravity
We consider a generalized three-dimensional theory of gravity which is
specified by two fields, the graviton and the dilaton, and one parameter. This
theory contains, as particular cases, three-dimensional General Relativity and
three-dimensional String Theory. Stationary black hole solutions are generated
from the static ones using a simple coordinate transformation. The stationary
black holes solutions thus obtained are locally equivalent to the corresponding
static ones, but globally distinct. The mass and angular momentum of the
stationary black hole solutions are computed using an extension of the Regge
and Teitelboim formalism. The causal structure of the black holes is described.Comment: 12 pages, Late
Collapsing shells of radiation in anti-de Sitter spacetimes and the hoop and cosmic censorship conjectures
Gravitational collapse of radiation in an anti-de Sitter background is
studied. For the spherical case, the collapse proceeds in much the same way as
in the Minkowski background, i.e., massless naked singularities may form for a
highly inhomogeneous collapse, violating the cosmic censorship, but not the
hoop conjecture. The toroidal, cylindrical and planar collapses can be treated
together. In these cases no naked singularity ever forms, in accordance with
the cosmic censorship. However, since the collapse proceeds to form toroidal,
cylindrical or planar black holes, the hoop conjecture in an anti-de Sitter
spacetime is violated.Comment: 4 pages, Revtex Journal: to appear in Physical Review
The Two-Dimensional Analogue of General Relativity
General Relativity in three or more dimensions can be obtained by taking the
limit in the Brans-Dicke theory. In two dimensions
General Relativity is an unacceptable theory. We show that the two-dimensional
closest analogue of General Relativity is a theory that also arises in the
limit of the two-dimensional Brans-Dicke theory.Comment: 8 pages, LaTeX, preprint DF/IST-17.9
The Three-Dimensional BTZ Black Hole as a Cylindrical System in Four-Dimensional General Relativity
It is shown how to transform the three dimensional BTZ black hole into a four
dimensional cylindrical black hole (i.e., black string) in general relativity.
This process is identical to the transformation of a point particle in three
dimensions into a straight cosmic string in four dimensions.Comment: Latex, 9 page
Two-Dimensional Black Holes and Planar General Relativity
The Einstein-Hilbert action with a cosmological term is used to derive a new
action in 1+1 spacetime dimensions. It is shown that the two-dimensional theory
is equivalent to planar symmetry in General Relativity. The two-dimensional
theory admits black holes and free dilatons, and has a structure similar to
two-dimensional string theories. Since by construction these solutions also
solve Einstein's equations, such a theory can bring two-dimensional results
into the four-dimensional real world. In particular the two-dimensional black
hole is also a black hole in General Relativity.Comment: 11 pages, plainte
False vacuum decay: effective one-loop action for pair creation of domain walls
An effective one-loop action built from the soliton field itself for the
two-dimensional (2D) problem of soliton pair creation is proposed. The action
consists of the usual mass term and a kinetic term in which the simple
derivative of the soliton field is replaced by a covariant derivative. In this
effective action the soliton charge is treated no longer as a topological
charge but as a Noether charge. Using this effective one-loop action, the
soliton-antisoliton pair production rate is calculated and one recovers Stone's
exponential factor and the prefactor of Kiselev, Selivanov and Voloshin. The
results are also valid straightforwardly to the problem of pair creation rate
of domain walls in dimensions greater than 2.Comment: 12 pages, Late
BLACK HOLES IN THREE-DIMENSIONAL DILATON GRAVITY THEORIES
Three dimensional black holes in a generalized dilaton gravity action theory
are analysed. The theory is specified by two fields, the dilaton and the
graviton, and two parameters, the cosmological constant and the Brans-Dicke
parameter. It contains seven different cases, of which one distinguishes as
special cases, string theory, general relativity and a theory equivalent to
four dimensional general relativity with one Killing vector. We study the
causal structure and geodesic motion of null and timelike particles in the
black hole geometries and find the ADM masses of the different solutions.Comment: 19 pages, latex, 4 figures as uuencoded postscript file
Gravitational collapse to toroidal, cylindrical and planar black holes
Gravitational collapse of non-spherical symmetric matter leads inevitably to
non-static external spacetimes. It is shown here that gravitational collapse of
matter with toroidal topology in a toroidal anti-de Sitter background proceeds
to form a toroidal black hole. According to the analytical model presented, the
collapsing matter absorbs energy in the form of radiation (be it scalar,
neutrinos, electromagnetic, or gravitational) from the exterior spacetime. Upon
decompactification of one or two coordinates of the torus one gets collapsing
solutions of cylindrical or planar matter onto black strings or black
membranes, respectively. The results have implications on the hoop conjecture.Comment: 6 pages, Revtex, modifications in the title and in the interpretation
of some results, to appear in Physical Review
- …