170 research outputs found

    Roughening Transition of Interfaces in Disordered Systems

    Full text link
    The behavior of interfaces in the presence of both lattice pinning and random field (RF) or random bond (RB) disorder is studied using scaling arguments and functional renormalization techniques. For the first time we show that there is a continuous disorder driven roughening transition from a flat to a rough state for internal interface dimensions 2<D<4. The critical exponents are calculated in an \epsilon-expansion. At the transition the interface shows a superuniversal logarithmic roughness for both RF and RB systems. A transition does not exist at the upper critical dimension D_c=4. The transition is expected to be observable in systems with dipolar interactions by tuning the temperature.Comment: 4 pages, RevTeX, 1 postscript figur

    Roughness at the depinning threshold for a long-range elastic string

    Full text link
    In this paper, we compute the roughness exponent zeta of a long-range elastic string, at the depinning threshold, in a random medium with high precision, using a numerical method which exploits the analytic structure of the problem (`no-passing' theorem), but avoids direct simulation of the evolution equations. This roughness exponent has recently been studied by simulations, functional renormalization group calculations, and by experiments (fracture of solids, liquid meniscus in 4He). Our result zeta = 0.390 +/- 0.002 is significantly larger than what was stated in previous simulations, which were consistent with a one-loop renormalization group calculation. The data are furthermore incompatible with the experimental results for crack propagation in solids and for a 4He contact line on a rough substrate. This implies that the experiments cannot be described by pure harmonic long-range elasticity in the quasi-static limit.Comment: 4 pages, 3 figure

    The depinning transition of a driven interface in the random-field Ising model around the upper critical dimension

    Full text link
    We investigate the depinning transition for driven interfaces in the random-field Ising model for various dimensions. We consider the order parameter as a function of the control parameter (driving field) and examine the effect of thermal fluctuations. Although thermal fluctuations drive the system away from criticality the order parameter obeys a certain scaling law for sufficiently low temperatures and the corresponding exponents are determined. Our results suggest that the so-called upper critical dimension of the depinning transition is five and that the systems belongs to the universality class of the quenched Edward-Wilkinson equation.Comment: accepted for publication in Phys. Rev.

    Theory of plastic vortex creep

    Full text link
    We develop a theory for plastic flux creep in a topologically disordered vortex solid phase in type-II superconductors. We propose a detailed description of the plastic vortex creep of the dislocated, amorphous vortex glass in terms of motion of dislocations driven by a transport current jj. The {\em plastic barriers} Upl(j)jμU_{pl}(j)\propto j^{-\mu} show power-law divergence at small drives with exponents μ=1\mu=1 for single dislocation creep and μ=2/5\mu = 2/5 for creep of dislocation bundles. The suppression of the creep rate is a hallmark of the transition from the topologically ordered vortex lattice to an amorphous vortex glass, reflecting a jump in μ\mu from μ=2/11\mu = 2/11, characterizing creep in the topologically ordered vortex lattice near the transition, to its plastic values. The lower creep rates explain the observed increase in apparent critical currents in the dislocated vortex glass.Comment: 4 pages, 1 figur

    Quantum Collective Creep: a Quasiclassical Langevin Equation Approach

    Full text link
    The dynamics of an elastic medium driven through a random medium by a small applied force is investigated in the low-temperature limit where quantum fluctuations dominate. The motion proceeds via tunneling of segments of the manifold through barriers whose size grows with decreasing driving force ff. In the limit of small drive, at zero-temperature the average velocity has the form vexp[const./αfμ]v\propto\exp[-{\rm const.}/\hbar^{\alpha} f^{\mu}]. For strongly dissipative dynamics, there is a wide range of forces where the dissipation dominates and the velocity--force characteristics takes the form vexp[S(f)/]v\propto\exp[-S(f)/\hbar], with S(f)1/f(d+2ζ)/(2ζ)S(f)\propto 1/ f^{(d+2\zeta)/(2-\zeta)} the action for a typical tunneling event, the force dependence being determined by the roughness exponent ζ\zeta of the dd-dimensional manifold. This result agrees with the one obtained via simple scaling considerations. Surprisingly, for asymptotically low forces or for the case when the massive dynamics is dominant, the resulting quantum creep law is {\it not} of the usual form with a rate proportional to exp[S(f)/]\exp[-S(f)/\hbar]; rather we find vexp{[S(f)/]2}v\propto \exp\{-[S(f)/\hbar]^2\} corresponding to α=2\alpha=2 and μ=2(d+2ζ1)/(2ζ)\mu= 2(d+2\zeta-1)/(2-\zeta), with μ/2\mu/2 the naive scaling exponent for massive dynamics. Our analysis is based on the quasi-classical Langevin approximation with a noise obeying the quantum fluctuation--dissipation theorem. The many space and time scales involved in the dynamics are treated via a functional renormalization group analysis related to that used previously to treat the classical dynamics of such systems. Various potential difficulties with these approaches to the multi-scale dynamics -- both classical and quantum -- are raised and questions about the validity of the results are discussed.Comment: RevTeX, 30 pages, 8 figures inserte

    Width distribution of contact lines on a disordered substrate

    Full text link
    We have studied the roughness of a contact line of a liquid meniscus on a disordered substrate by measuring its width distribution. The comparison between the measured width distribution and the width distribution calculated in previous works, extended here to the case of open boundary conditions, confirms that the Joanny-de Gennes model is not sufficient to describe the dynamics of contact lines at the depinning threshold. This conclusion is in agreement with recent measurements which determine the roughness exponent by extrapolation to large system sizes.Comment: 4 pages, 3 figure

    Impact of long-range interactions on the disordered vortex lattice

    Full text link
    The interaction between the vortex lines in a type-II superconductor is mediated by currents. In the absence of transverse screening this interaction is long-ranged, stiffening up the vortex lattice as expressed by the dispersive elastic moduli. The effect of disorder is strongly reduced, resulting in a mean-squared displacement correlator = characterized by a mere logarithmic growth with distance. Finite screening cuts the interaction on the scale of the London penetration depth \lambda and limits the above behavior to distances R<\lambda. Using a functional renormalization group (RG) approach, we derive the flow equation for the disorder correlation function and calculate the disorder-averaged mean-squared relative displacement \propto ln^{2\sigma} (R/a_0). The logarithmic growth (2\sigma=1) in the perturbative regime at small distances [A.I. Larkin and Yu.N. Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979)] crosses over to a sub-logarithmic growth with 2\sigma=0.348 at large distances.Comment: 9 pages, no figure

    Functional Renormalization Group and the Field Theory of Disordered Elastic Systems

    Full text link
    We study elastic systems such as interfaces or lattices, pinned by quenched disorder. To escape triviality as a result of ``dimensional reduction'', we use the functional renormalization group. Difficulties arise in the calculation of the renormalization group functions beyond 1-loop order. Even worse, observables such as the 2-point correlation function exhibit the same problem already at 1-loop order. These difficulties are due to the non-analyticity of the renormalized disorder correlator at zero temperature, which is inherent to the physics beyond the Larkin length, characterized by many metastable states. As a result, 2-loop diagrams, which involve derivatives of the disorder correlator at the non-analytic point, are naively "ambiguous''. We examine several routes out of this dilemma, which lead to a unique renormalizable field-theory at 2-loop order. It is also the only theory consistent with the potentiality of the problem. The beta-function differs from previous work and the one at depinning by novel "anomalous terms''. For interfaces and random bond disorder we find a roughness exponent zeta = 0.20829804 epsilon + 0.006858 epsilon^2, epsilon = 4-d. For random field disorder we find zeta = epsilon/3 and compute universal amplitudes to order epsilon^2. For periodic systems we evaluate the universal amplitude of the 2-point function. We also clarify the dependence of universal amplitudes on the boundary conditions at large scale. All predictions are in good agreement with numerical and exact results, and an improvement over one loop. Finally we calculate higher correlation functions, which turn out to be equivalent to those at depinning to leading order in epsilon.Comment: 42 pages, 41 figure

    2-loop Functional Renormalization Group Theory of the Depinning Transition

    Full text link
    We construct the field theory which describes the universal properties of the quasi-static isotropic depinning transition for interfaces and elastic periodic systems at zero temperature, taking properly into account the non-analytic form of the dynamical action. This cures the inability of the 1-loop flow-equations to distinguish between statics and quasi-static depinning, and thus to account for the irreversibility of the latter. We prove two-loop renormalizability, obtain the 2-loop beta-function and show the generation of "irreversible" anomalous terms, originating from the non-analytic nature of the theory, which cause the statics and driven dynamics to differ at 2-loop order. We obtain the roughness exponent zeta and dynamical exponent z to order epsilon^2. This allows to test several previous conjectures made on the basis of the 1-loop result. First it demonstrates that random-field disorder does indeed attract all disorder of shorter range. It also shows that the conjecture zeta=epsilon/3 is incorrect, and allows to compute the violations, as zeta=epsilon/3 (1 + 0.14331 epsilon), epsilon=4-d. This solves a longstanding discrepancy with simulations. For long-range elasticity it yields zeta=epsilon/3 (1 + 0.39735 epsilon), epsilon=2-d (vs. the standard prediction zeta=1/3 for d=1), in reasonable agreement with the most recent simulations. The high value of zeta approximately 0.5 found in experiments both on the contact line depinning of liquid Helium and on slow crack fronts is discussed.Comment: 32 pages, 17 figures, revtex
    corecore