20,215 research outputs found
Implications of Lorentz covariance for the guidance equation in two-slit quantum interference
It is known that Lorentz covariance fixes uniquely the current and the
associated guidance law in the trajectory interpretation of quantum mechanics
for spin particles. In the non-relativistic domain this implies a guidance law
for the electron which differs by an additional spin-dependent term from that
originally proposed by de Broglie and Bohm. In this paper we explore some of
the implications of the modified guidance law. We bring out a property of
mutual dependence in the particle coordinates that arises in product states,
and show that the quantum potential has scalar and vector components which
implies the particle is subject to a Lorentz-like force. The conditions for the
classical limit and the limit of negligible spin are given, and the empirical
sufficiency of the model is demonstrated. We then present a series of
calculations of the trajectories based on two-dimensional Gaussian wave packets
which illustrate how the additional spin-dependent term plays a significant
role in structuring both the individual trajectories and the ensemble. The
single packet corresponds to quantum inertial motion. The distinct features
encountered when the wavefunction is a product or a superposition are explored,
and the trajectories that model the two-slit experiment are given. The latter
paths exhibit several new characteristics compared with the original de
Broglie-Bohm ones, such as crossing of the axis of symmetry.Comment: 27 pages including 6 pages of figure
Bohmian trajectories and Klein's paradox
We compute the Bohmian trajectories of the incoming scattering plane waves
for Klein's potential step in explicit form. For finite norm incoming
scattering solutions we derive their asymptotic space-time localization and we
compute some Bohmian trajectories numerically. The paradox, which appears in
the traditional treatments of the problem based on the outgoing scattering
asymptotics, is absent.Comment: 14 pages, 3 figures; minor format change
HST/STIS Imaging of the Host Galaxy of GRB980425/SN1998bw
We present HST/STIS observations of ESO 184-G82, the host galaxy of the
gamma-ray burst GRB 980425 associated with the peculiar Type Ic supernova
SN1998bw. ESO 184-G82 is found to be an actively star forming SBc sub-luminous
galaxy. We detect an object consistent with being a point source within the
astrometric uncertainty of 0.018 arcseconds of the position of the supernova.
The object is located inside a star-forming region and is at least one
magnitude brighter than expected for the supernova based on a simple
radioactive decay model. This implies either a significant flattening of the
light curve or a contribution from an underlying star cluster.Comment: 12 pages, 2 figures, AASTeX v5.02 accepted for publication in ApJ
Letter
Comments on the Quantum Potential Approach to a Class of Quantum Cosmological Models
In this comment we bring attention to the fact that when we apply the
ontological interpretation of quantum mechanics, we must be sure to use it in
the coordinate representation. This is particularly important when canonical
tranformations that mix momenta and coordinates are present. This implies that
some of the results obtained by A. B\l aut and J. Kowalski-Glikman are
incorrect.Comment: 7 pages, LaTe
An Updated Ultraviolet Calibration for the Swift/UVOT
We present an updated calibration of the Swift/UVOT broadband ultraviolet
(uvw1, uvm2, and uvw2) filters. The new calibration accounts for the ~1% per
year decline in the UVOT sensitivity observed in all filters, and makes use of
additional calibration sources with a wider range of colours and with HST
spectrophotometry. In this paper we present the new effective area curves and
instrumental photometric zeropoints and compare with the previous calibration.Comment: 4 pages, 3 figures, 2 tables. Presented at GRB 2010 symposium,
Annapolis, November 2010 to be published in American Institute of Physics
Conference Serie
Hierarchical Models for Independence Structures of Networks
We introduce a new family of network models, called hierarchical network
models, that allow us to represent in an explicit manner the stochastic
dependence among the dyads (random ties) of the network. In particular, each
member of this family can be associated with a graphical model defining
conditional independence clauses among the dyads of the network, called the
dependency graph. Every network model with dyadic independence assumption can
be generalized to construct members of this new family. Using this new
framework, we generalize the Erd\"os-R\'enyi and beta-models to create
hierarchical Erd\"os-R\'enyi and beta-models. We describe various methods for
parameter estimation as well as simulation studies for models with sparse
dependency graphs.Comment: 19 pages, 7 figure
- …