3,163 research outputs found
Theory Challenges of the Accelerating Universe
The accelerating expansion of the universe presents an exciting, fundamental
challenge to the standard models of particle physics and cosmology. I highlight
some of the outstanding challenges in both developing theoretical models and
interpreting without bias the observational results from precision cosmology
experiments in the next decade that will return data to help reveal the nature
of the new physics. Examples given focus on distinguishing a new component of
energy from a new law of gravity, and the effect of early dark energy on baryon
acoustic oscillations.Comment: 10 pages, 4 figures; minor changes to match J. Phys. A versio
Fermion absorption cross section of a Schwarzschild black hole
We study the absorption of massive spin-half particles by a small
Schwarzschild black hole by numerically solving the single-particle Dirac
equation in Painleve-Gullstrand coordinates. We calculate the absorption cross
section for a range of gravitational couplings Mm/m_P^2 and incident particle
energies E. At high couplings, where the Schwarzschild radius R_S is much
greater than the wavelength lambda, we find that the cross section approaches
the classical result for a point particle. At intermediate couplings we find
oscillations around the classical limit whose precise form depends on the
particle mass. These oscillations give quantum violations of the equivalence
principle. At high energies the cross section converges on the geometric-optics
value of 27 \pi R_S^2/4, and at low energies we find agreement with an
approximation derived by Unruh. When the hole is much smaller than the particle
wavelength we confirm that the minimum possible cross section approaches \pi
R_S^2/2.Comment: 11 pages, 3 figure
Early Dark Energy Cosmologies
We propose a novel parameterization of the dark energy density. It is
particularly well suited to describe a non-negligible contribution of dark
energy at early times and contains only three parameters, which are all
physically meaningful: the fractional dark energy density today, the equation
of state today and the fractional dark energy density at early times. As we
parameterize Omega_d(a) directly instead of the equation of state, we can give
analytic expressions for the Hubble parameter, the conformal horizon today and
at last scattering, the sound horizon at last scattering, the acoustic scale as
well as the luminosity distance. For an equation of state today w_0 < -1, our
model crosses the cosmological constant boundary. We perform numerical studies
to constrain the parameters of our model by using Cosmic Microwave Background,
Large Scale Structure and Supernovae Ia data. At 95% confidence, we find that
the fractional dark energy density at early times Omega_early < 0.06. This
bound tightens considerably to Omega_early < 0.04 when the latest Boomerang
data is included. We find that both the gold sample of Riess et. al. and the
SNLS data by Astier et. al. when combined with CMB and LSS data mildly prefer
w_0 < -1, but are well compatible with a cosmological constant.Comment: 6 pages, 3 figures; references added, matches published versio
New Techniques for Analysing Axisymmetric Gravitational Systems. 1. Vacuum Fields
A new framework for analysing the gravitational fields in a stationary,
axisymmetric configuration is introduced. The method is used to construct a
complete set of field equations for the vacuum region outside a rotating
source. These equations are under-determined. Restricting the Weyl tensor to
type D produces a set of equations which can be solved, and a range of new
techniques are introduced to simplify the problem. Imposing the further
condition that the solution is asymptotically flat yields the Kerr solution
uniquely. The implications of this result for the no-hair theorem are
discussed. The techniques developed here have many other applications, which
are described in the conclusions.Comment: 30 pages, no figure
Varying Alpha Monopoles
We study static magnetic monopoles in the context of varying alpha theories
and show that there is a group of models for which the t'Hooft-Polyakov
solution is still valid. Nevertheless, in general static magnetic monopole
solutions in varying alpha theories depart from the classical t'Hooft-Polyakov
solution with the electromagnetic energy concentrated inside the core seeding
spatial variations of the fine structure constant. We show that Equivalence
Principle constraints impose tight limits on the allowed variations of alpha
induced by magnetic monopoles which confirms the difficulty to generate
significant large-scale spatial variation of the fine structure constant found
in previous works. This is true even in the most favorable case where magnetic
monopoles are the source for these variations.Comment: 8 pages, 10 figures; Version to be published in Phys. Rev.
Whole genome association study identifies regions of the bovine genome and biological pathways involved in carcass trait performance in Holstein-Friesian cattle
peer-reviewedBackground
Four traits related to carcass performance have been identified as economically important in beef production: carcass weight, carcass fat, carcass conformation of progeny and cull cow carcass weight. Although Holstein-Friesian cattle are primarily utilized for milk production, they are also an important source of meat for beef production and export. Because of this, there is great interest in understanding the underlying genomic structure influencing these traits. Several genome-wide association studies have identified regions of the bovine genome associated with growth or carcass traits, however, little is known about the mechanisms or underlying biological pathways involved. This study aims to detect regions of the bovine genome associated with carcass performance traits (employing a panel of 54,001 SNPs) using measures of genetic merit (as predicted transmitting abilities) for 5,705 Irish Holstein-Friesian animals. Candidate genes and biological pathways were then identified for each trait under investigation.
Results
Following adjustment for false discovery (q-value 0.5) with at least one of the four traits. In total, 557 unique bovine genes, which mapped to 426 human orthologs, were within 500kbs of QTL found associated with a trait using the Bayesian approach. Using this information, 24 significantly over-represented pathways were identified across all traits. The most significantly over-represented biological pathway was the peroxisome proliferator-activated receptor (PPAR) signaling pathway.
Conclusions
A large number of genomic regions putatively associated with bovine carcass traits were detected using two different statistical approaches. Notably, several significant associations were detected in close proximity to genes with a known role in animal growth such as glucagon and leptin. Several biological pathways, including PPAR signaling, were shown to be involved in various aspects of bovine carcass performance. These core genes and biological processes may form the foundation for further investigation to identify causative mutations involved in each trait. Results reported here support previous findings suggesting conservation of key biological processes involved in growth and metabolism
Is PPARγ a Prospective Player in HIV-1-Associated Bone Disease?
Currently infection with the human immunodeficiency virus-1 (HIV-1) is in most instances a chronic disease that can be controlled by effective antiretroviral therapy (ART). However, chronic use of ART has been associated with a number of toxicities; including significant reductions in bone mineral density (BMD) and disorders of the fat metabolism. The peroxisome proliferator-activated receptor gamma (PPARγ) transcription factor is vital for the development and maintenance of mature and developing adipocytes. Alterations in PPARγ expression have been implicated as a factor in the mechanism of HIV-1-associated lipodystrophy. Both reduced BMD and lipodystrophy have been well described as complications of HIV-1 infection and treatment, and a question remains as to their interdependence. Interestingly, both adipocytes and osteoblasts are derived from a common precursor cell type; the mesenchymal stem cell. The possibility that dysregulation of PPARγ (and the subsequent effect on both osteoblastogenesis and adipogenesis) is a contributory factor in the lipid- and bone-abnormalities observed in HIV-1 infection and treatment has also been investigated. This review deals with the hypothesis that dysregulation of PPARγ may underpin the bone abnormalities associated with HIV-1 infection, and treats the current knowledge and prospective developments, in our understanding of PPARγ involvement in HIV-1-associated bone disease
The Influence of Group Labs on Student Adoption of Software Methodologies: An Empirical Test
The ACM\u27s CIS curriculum model calls for structured laboratories using groups to instruct students in software engineering methodologies. A social-psychological model of individual acceptance of a technological innovation is employed to empirically test the effectiveness of structured labs in fostering individual adoption of a software engineering methodology. Our findings suggest that a structured labexperience does influence a student\u27s belief system regarding the usefulness of a methodology, leading to a decision to adopt the methodology in completing individual programming assignment
Effective Symmetries of the Minimal Supermultiplet of N = 8 Extended Worldline Supersymmetry
A minimal representation of the N = 8 extended worldline supersymmetry, known
as the `ultra-multiplet', is closely related to a family of supermultiplets
with the same, E(8) chromotopology. We catalogue their effective symmetries and
find a Spin(4) x Z(2) subgroup common to them all, which explains the
particular basis used in the original construction. We specify a constrained
superfield representation of the supermultiplets in the ultra-multiplet family,
and show that such a superfield representation in fact exists for all adinkraic
supermultiplets. We also exhibit the correspondences between these
supermultiplets, their Adinkras and the E(8) root lattice bases. Finally, we
construct quadratic Lagrangians that provide the standard kinetic terms and
afford a mixing of an even number of such supermultiplets controlled by a
coupling to an external 2-form of fluxes.Comment: 13 Figure
- …