41 research outputs found

    Liquid Chromatography Electron Capture Dissociation Tandem Mass Spectrometry (LC-ECD-MS/MS) versus Liquid Chromatography Collision-induced Dissociation Tandem Mass Spectrometry (LC-CID-MS/MS) for the Identification of Proteins

    Get PDF
    Electron capture dissociation (ECD) offers many advantages over the more traditional fragmentation techniques for the analysis of peptides and proteins, although the question remains: How suitable is ECD for incorporation within proteomic strategies for the identification of proteins? Here, we compare LC-ECD-MS/MS and LC-CID-MS/MS as techniques for the identification of proteins.Experiments were performed on a hybrid linear ion trap–Fourier transform ion cyclotron resonance mass spectrometer. Replicate analyses of a six-protein (bovine serum albumin, apo-transferrin,lysozyme, cytochrome c, alcohol dehydrogenase, and β-galactosidase) tryptic digest were performed and the results analyzed on the basis of overall protein sequence coverage and sequence tag lengths within individual peptides. The results show that although protein coverage was lower for LC-ECDMS/MS than for LC-CID-MS/MS, LC-ECD-MS/MS resulted in longer peptide sequence tags,providing greater confidence in protein assignment

    Instrumental Requirements for Nanoscale Liquid Chromatography

    No full text

    Online Electrochemical Reduction of Both Inter-and Intramolecular Disulfide Bridges in Immunoglobulins

    Get PDF
    Electrochemical reduction of intermolecular disulfide bridges has previously been demonstrated in immunoglobulins but failed to achieve reduction of intramolecular bonds. We now report an improved method that achieves the full reduction of both intermolecular and intramolecular disulfide bridges in a set of monoclonal antibodies based on their intact mass and on MS/MS analysis. The system uses an online electrochemical flow cell positioned online between a chromatography system and a mass spectrometer to give direct information on pairs of heavy and light chains in an antibody. The complete reduction of the intramolecular disulfide bridges is important, as the redox state affects the intact mass of the antibody chain. Disulfide bonds also hamper MS/MS fragmentation of protein chains and thus limit the confirmation of the amino acid sequence of the protein of interest. The improved electrochemical system and associated protocols can simplify sample processing prior to analysis, as chemical reduction is not required. Also, it opens up new possibilities in the top-down mass spectrometry analysis of samples containing complex biomolecules with inter-and intramolecular disulfide bridges. © 2022 American Chemical Society. All rights reserved
    corecore