4,237 research outputs found
Spin Alignment of Heavy Meson Revisited
Using heavy quark effective theory a factorized form for inclusive production
rate of a heavy meson can be obtained, in which the nonperturbative effect
related to the heavy meson can be characterized by matrix elements defined in
the heavy quark effective theory. Using this factorization, predictions for the
full spin density matrix of a spin-1 and spin-2 meson can be obtained and they
are characterized only by one coefficient representing the nonperturbative
effect. Predictions for spin-1 heavy meson are compared with experiment
performed at colliders in the energy range from GeV to
GeV, a complete agreement is found for - and -meson.
There are distinct differences from the existing approach and they are
discussed.Comment: 6 pages, Talk given at 3rd Circum-Pan-Pacific Symposium on "High
Energy Spin Physics", Beijing, China, 8-13, 200
Turbulent transport in hydromagnetic flows
The predictive power of mean-field theory is emphasized by comparing theory
with simulations under controlled conditions. The recently developed test-field
method is used to extract turbulent transport coefficients both in kinematic as
well as nonlinear and quasi-kinematic cases. A striking example of the
quasi-kinematic method is provided by magnetic buoyancy-driven flows that
produce an alpha effect and turbulent diffusion.Comment: 17 pages, 6 figures, topical issue of Physica Scripta on turbulent
mixing and beyon
The alpha effect with imposed and dynamo-generated magnetic fields
Estimates for the nonlinear alpha effect in helical turbulence with an
applied magnetic field are presented using two different approaches: the
imposed-field method where the electromotive force owing to the applied field
is used, and the test-field method where separate evolution equations are
solved for a set of different test fields. Both approaches agree for stronger
fields, but there are apparent discrepancies for weaker fields that can be
explained by the influence of dynamo-generated magnetic fields on the scale of
the domain that are referred to as meso-scale magnetic fields. Examples are
discussed where these meso-scale fields can lead to both drastically
overestimated and underestimated values of alpha compared with the kinematic
case. It is demonstrated that the kinematic value can be recovered by resetting
the fluctuating magnetic field to zero in regular time intervals. It is
concluded that this is the preferred technique both for the imposed-field and
the test-field methods.Comment: 10 pages, 8 figures, published versio
Lambda-effect from forced turbulence simulations
Aims: We determine the components of the -effect tensor that
quantifies the contributions to the turbulent momentum transport even for
uniform rotation. Methods: Three-dimensional numerical simulations are used to
study turbulent transport in triply periodic cubes under the influence of
rotation and anisotropic forcing. Comparison is made with analytical results
obtained via the so-called minimal tau-approximation. Results: In the case
where the turbulence intensity in the vertical direction dominates, the
vertical stress is always negative. This situation is expected to occur in
stellar convection zones. The horizontal component of the stress is weaker and
exhibits a maximum at latitude 30 degrees - regardless of how rapid the
rotation is. The minimal tau-approximation captures many of the qualitative
features of the numerical results, provided the relaxation time tau is close to
the turnover time, i.e. the Strouhal number is of order unity.Comment: 20 pages, 14 figures, accepted for publication in Astronomy &
Astrophysic
- …