4,237 research outputs found

    Spin Alignment of Heavy Meson Revisited

    Full text link
    Using heavy quark effective theory a factorized form for inclusive production rate of a heavy meson can be obtained, in which the nonperturbative effect related to the heavy meson can be characterized by matrix elements defined in the heavy quark effective theory. Using this factorization, predictions for the full spin density matrix of a spin-1 and spin-2 meson can be obtained and they are characterized only by one coefficient representing the nonperturbative effect. Predictions for spin-1 heavy meson are compared with experiment performed at e+e−e^+e^- colliders in the energy range from s=10.5\sqrt{s}=10.5GeV to s=91\sqrt{s}=91GeV, a complete agreement is found for D∗D^*- and B∗B^*-meson. There are distinct differences from the existing approach and they are discussed.Comment: 6 pages, Talk given at 3rd Circum-Pan-Pacific Symposium on "High Energy Spin Physics", Beijing, China, 8-13, 200

    Turbulent transport in hydromagnetic flows

    Full text link
    The predictive power of mean-field theory is emphasized by comparing theory with simulations under controlled conditions. The recently developed test-field method is used to extract turbulent transport coefficients both in kinematic as well as nonlinear and quasi-kinematic cases. A striking example of the quasi-kinematic method is provided by magnetic buoyancy-driven flows that produce an alpha effect and turbulent diffusion.Comment: 17 pages, 6 figures, topical issue of Physica Scripta on turbulent mixing and beyon

    The alpha effect with imposed and dynamo-generated magnetic fields

    Full text link
    Estimates for the nonlinear alpha effect in helical turbulence with an applied magnetic field are presented using two different approaches: the imposed-field method where the electromotive force owing to the applied field is used, and the test-field method where separate evolution equations are solved for a set of different test fields. Both approaches agree for stronger fields, but there are apparent discrepancies for weaker fields that can be explained by the influence of dynamo-generated magnetic fields on the scale of the domain that are referred to as meso-scale magnetic fields. Examples are discussed where these meso-scale fields can lead to both drastically overestimated and underestimated values of alpha compared with the kinematic case. It is demonstrated that the kinematic value can be recovered by resetting the fluctuating magnetic field to zero in regular time intervals. It is concluded that this is the preferred technique both for the imposed-field and the test-field methods.Comment: 10 pages, 8 figures, published versio

    Lambda-effect from forced turbulence simulations

    Full text link
    Aims: We determine the components of the Λ\Lambda-effect tensor that quantifies the contributions to the turbulent momentum transport even for uniform rotation. Methods: Three-dimensional numerical simulations are used to study turbulent transport in triply periodic cubes under the influence of rotation and anisotropic forcing. Comparison is made with analytical results obtained via the so-called minimal tau-approximation. Results: In the case where the turbulence intensity in the vertical direction dominates, the vertical stress is always negative. This situation is expected to occur in stellar convection zones. The horizontal component of the stress is weaker and exhibits a maximum at latitude 30 degrees - regardless of how rapid the rotation is. The minimal tau-approximation captures many of the qualitative features of the numerical results, provided the relaxation time tau is close to the turnover time, i.e. the Strouhal number is of order unity.Comment: 20 pages, 14 figures, accepted for publication in Astronomy & Astrophysic
    • …
    corecore