2,863 research outputs found
Quantum state transfer and entanglement distribution among distant nodes in a quantum network
We propose a scheme to utilize photons for ideal quantum transmission between
atoms located at spatially-separated nodes of a quantum network. The
transmission protocol employs special laser pulses which excite an atom inside
an optical cavity at the sending node so that its state is mapped into a
time-symmetric photon wavepacket that will enter a cavity at the receiving node
and be absorbed by an atom there with unit probability. Implementation of our
scheme would enable reliable transfer or sharing of entanglement among
spatially distant atoms.Comment: 4 pages, 3 postscript figure
Using of small-scale quantum computers in cryptography with many-qubit entangled states
We propose a new cryptographic protocol. It is suggested to encode
information in ordinary binary form into many-qubit entangled states with the
help of a quantum computer. A state of qubits (realized, e.g., with photons) is
transmitted through a quantum channel to the addressee, who applies a quantum
computer tuned to realize the inverse unitary transformation decoding of the
message. Different ways of eavesdropping are considered, and an estimate of the
time needed for determining the secret unitary transformation is given. It is
shown that using even small quantum computers can serve as a basis for very
efficient cryptographic protocols. For a suggested cryptographic protocol, the
time scale on which communication can be considered secure is exponential in
the number of qubits in the entangled states and in the number of gates used to
construct the quantum network
A Comprehensive Archival Search for Counterparts to Ultra-Compact High Velocity Clouds: Five Local Volume Dwarf Galaxies
We report five Local Volume dwarf galaxies (two of which are presented here
for the first time) uncovered during a comprehensive archival search for
optical counterparts to ultra-compact high velocity clouds (UCHVCs). The UCHVC
population of HI clouds are thought to be candidate gas-rich, low mass halos at
the edge of the Local Group and beyond, but no comprehensive search for stellar
counterparts to these systems has been presented. Careful visual inspection of
all publicly available optical and ultraviolet imaging at the position of the
UCHVCs revealed six blue, diffuse counterparts with a morphology consistent
with a faint dwarf galaxy beyond the Local Group. Optical spectroscopy of all
six candidate dwarf counterparts show that five have an H-derived
velocity consistent with the coincident HI cloud, confirming their association,
the sixth diffuse counterpart is likely a background object. The size and
luminosity of the UCHVC dwarfs is consistent with other known Local Volume
dwarf irregular galaxies. The gas fraction () of the five
dwarfs are generally consistent with that of dwarf irregular galaxies in the
Local Volume, although ALFALFA-Dw1 (associated with ALFALFA UCHVC
HVC274.68+74.70123) has a very high 40. Despite the
heterogenous nature of our search, we demonstrate that the current dwarf
companions to UCHVCs are at the edge of detectability due to their low surface
brightness, and that deeper searches are likely to find more stellar systems.
If more sensitive searches do not reveal further stellar counterparts to
UCHVCs, then the dearth of such systems around the Local Group may be in
conflict with CDM simulations.Comment: 18 pages, 4 tables, 4 figures, ApJ Accepte
Effects on the maternofetal unit of the rabbit model after substitution of the amniotic fluid with perfluorocarbons
Objectives: Exchanging amniotic fluid (AF) with perfluorocarbon (PFC) may serve as a medium for fetoscopic surgery. This study evaluates the distribution and physiologic effects of intraamniotic PFC as a medium for fetoscopy. Methods: Fetuses of 17 pregnant rabbits underwent either exchange of the AF with PFC, electrolyte solution (ES), or control. The quality of vision during fetoscopy was assessed in AF and PFC. After 6 h, we determined the distribution of PFC in the maternofetal unit. Results: Quality of vision during fetoscopy was better in PFC than with AF. There was no difference in fetal survival between the study groups. PFC was demonstrated on X-ray in the pharynx of 4 fetuses, and the esophagus in 1. Conclusions: PFC provided an ideal medium for fetoscopy without fetal compromise. Copyright (c) 2005 S. Karger AG, Basel
Neutrinos in a spherical box
In the present paper we study some neutrino properties as they may appear in
the low energy neutrinos emitted in triton decay with maximum neutrino energy
of 18.6 keV. The technical challenges to this end can be achieved by building a
very large TPC capable of detecting low energy recoils, down to a a few tenths
of a keV, within the required low background constraints. More specifically We
propose the development of a spherical gaseous TPC of about 10-m in radius and
a 200 Mcurie triton source in the center of curvature. One can list a number of
exciting studies, concerning fundamental physics issues, that could be made
using a large volume TPC and low energy antineutrinos: 1) The oscillation
length involving the small angle of the neutrino mixing matrix, directly
measured in this disappearance experiment, is fully contained inside the
detector. Measuring the counting rate of neutrino-electron elastic scattering
as a function of the distance of the source will give a precise and unambiguous
measurement of the oscillation parameters free of systematic errors. In fact
first estimates show that even with a year's data taking a sensitivity of a few
percent for the measurement of the above angle will be achieved. 2) The low
energy detection threshold offers a unique sensitivity for the neutrino
magnetic moment which is about two orders of magnitude beyond the current
experimental limit. 3) Scattering at such low neutrino energies has never been
studied and any departure from the expected behavior may be an indication of
new physics beyond the standard model. In this work we mainly focus on the
various theoretical issues involved including a precise determination of the
Weinberg angle at very low momentum transfer.Comment: 16 Pages, LaTex, 7 figures, talk given at NANP 2003, Dubna, Russia,
June 23, 200
Entanglement of electrons in interacting molecules
Quantum entanglement is a concept commonly used with reference to the
existence of certain correlations in quantum systems that have no classical
interpretation. It is a useful resource to enhance the mutual information of
memory channels or to accelerate some quantum processes as, for example, the
factorization in Shor's Algorithm. Moreover, entanglement is a physical
observable directly measured by the von Neumann entropy of the system. We have
used this concept in order to give a physical meaning to the electron
correlation energy in systems of interacting electrons. The electronic
correlation is not directly observable, since it is defined as the difference
between the exact ground state energy of the many--electrons Schroedinger
equation and the Hartree--Fock energy. We have calculated the correlation
energy and compared with the entanglement, as functions of the nucleus--nucleus
separation using, for the hydrogen molecule, the Configuration Interaction
method. Then, in the same spirit, we have analyzed a dimer of ethylene, which
represents the simplest organic conjugate system, changing the relative
orientation and distance of the molecules, in order to obtain the configuration
corresponding to maximum entanglement.Comment: 15 pages, 7 figures, standard late
Evolution of a global string network in a matter dominated universe
We evolve the network of global strings in the matter-dominated universe by
means of numerical simulations. The existence of the scaling solution is
confirmed as in the radiation-dominated universe but the scaling parameter
takes a slightly smaller value, , which is
defined as with the energy density of
global strings and the string tension per unit length. The change of
from the radiation to the matter-dominated universe is consistent with
that obtained by Albrecht and Turok by use of the one-scale model. We also
study the loop distribution function and find that it can be well fitted with
that predicted by the one-scale model, where the number density of
the loop with the length is given by with and . Thus, the evolution of the
global string network in the matter-dominated universe can be well described by
the one-scale model as in the radiation-dominated universe.Comment: 10 pages, 5 figure
Graviton mass and total relative density of mass Omega_tot in Universe
It is noticed that the total relative density of mass in the Universe
Omega_tot should exceed 1, i.e. Omega_tot=1+f^2/6 according to the field
relativistic theory of gravity (RTG), which is free of the cosmological
singularity and which provides the Euclidean character for the 3-dimensional
space. Here f is the ratio of the graviton mass m_g to the contemporary value
of the ``Hubble mass'' m^0_H=\hbar H_0/c^2\simeq 3,8\cdot 10^{-66}h(g)
(h=0,71\pm0,07). Applying results of the experimental data processing presented
in [1] an upper limit for the graviton mass is established as m_g\leq 3,2\cdot
10^{-66}g at the 95% confidence level.Comment: 8 pages, latex fil
- …