7,654 research outputs found
Aging of poled ferroelectric ceramics due to relaxation of random depolarization fields by space-charge accumulation near grain boundaries
Migration of charged point defects triggered by the local random
depolarization field is shown to plausibly explain aging of poled ferroelectric
ceramics providing reasonable time and acceptor concentration dependences of
the emerging internal bias field. The theory is based on the evaluation of the
energy of the local depolarization field caused by mismatch of the
polarizations of neighbor grains. The kinetics of charge migration assumes
presence of mobile oxygen vacancies in the material due to the intentional or
unintentional acceptor doping. Satisfactory agreement of the theory with
experiment on the Fe-doped lead zirconate titanate is demonstrated.Comment: theory and experiment, 22 pages, 3 figure
A major outburst from the X-ray binary RX J0520.5-6932
We report on the analysis of 8 years of MAssive Compact Halo Objects (MACHO)
data for the source RX J0520.5-6932. A regular period of 24.4 days has been
confirmed, however this is manifest almost entirely in the red part of the
spectrum. A major outburst, lasting approximately 200 days, was observed which
increased the apparent brightness of the object by approximately 0.15
magnitudes without significantly altering its V-R colour index. This outburst
was also seen in X-ray data. The evidence from this analysis points to the
identification of this object as a Be/X-ray binary with a periodically variable
circumstellar disk and a very early optical counterpart.Comment: Paper has been accepted by MNRA
Cyclic Variability of the Circumstellar Disc of the Be Star Tau. II. Testing the 2D Global Disc Oscillation Model
Aims. In this paper we model, in a self-consistent way, polarimetric,
photometric, spectrophotometric and interferometric observations of the
classical Be star Tauri. Our primary goal is to conduct a critical
quantitative test of the global oscillation scenario. Methods. We have carried
out detailed three-dimensional, NLTE radiative transfer calculations using the
radiative transfer code HDUST. For the input for the code we have used the most
up-to-date research on Be stars to include a physically realistic description
for the central star and the circumstellar disc. We adopt a rotationally
deformed, gravity darkened central star, surrounded by a disc whose unperturbed
state is given by a steady-state viscous decretion disc model. We further
assume that disc is in vertical hydrostatic equilibrium. Results. By adopting a
viscous decretion disc model for Tauri and a rigorous solution of the
radiative transfer, we have obtained a very good fit of the time-average
properties of the disc. This provides strong theoretical evidence that the
viscous decretion disc model is the mechanism responsible for disc formation.
With the global oscillation model we have successfully fitted spatially
resolved VLTI/AMBER observations and the temporal V/R variations of the
H and Br lines. This result convincingly demonstrates that the
oscillation pattern in the disc is a one-armed spiral. Possible model
shortcomings, as well as suggestions for future improvements, are also
discussed.Comment: 14 pages, 9 figures, accepted to A&
The binary period and outburst behaviour of the SMC X-ray binary pulsar system SXP504
A probable binary period has been detected in the optical counterpart to the
X-ray source CXOU J005455.6-724510 = RX J0054.9-7245 = AXJ0054.8-7244 = SXP504
in the Small Magellanic Cloud. This source was detected by Chandra on 04 Jul
2002 and subsequently observed by XMM-Newton on 18 Dec 2003. The source is
coincident with an Optical Gravitational Lensing (OGLE) object in the
lightcurves of which several optical outburst peaks are visible at ~ 268 day
intervals. Timing analysis shows a period of 268.6 +/- 0.1 days at > 99%
significance. Archival Rossi X-ray Timing Explorer (RXTE) data for the 504s
pulse-period has revealed detections which correspond closely with predicted or
actual peaks in the optical data. The relationship between this orbital period
and the pulse period of 504s is within the normal variance found in the Corbet
diagram.Comment: Accepted by MNRAS. 1 LATEX page. 4 figure
Non-LTE Monte Carlo Radiative Transfer: II. Non-Isothermal Solutions for Viscous Keplerian Disks
We discuss the basic hydrodynamics that determines the density structure of
the disks around hot stars. Observational evidence supports the idea that these
disks are Keplerian (rotationally supported) gaseous disks. A popular scenario
in the literature, which naturally leads to the formation of Keplerian disks,
is the viscous decretion model. According to this scenario, the disks are
hydrostatically supported in the vertical direction, while the radial structure
is governed by the viscous transport. This suggests that the temperature is one
primary factor that governs the disk density structure. In a previous study we
demonstrated, using 3-D NLTE Monte Carlo simulations, that viscous keplerian
disks can be highly non-isothermal. In this paper we build upon our previous
work and solve the full problem of the steady-state non-isothermal viscous
diffusion and vertical hydrostatic equilibrium. We find that the
self-consistent solution departs significantly from the analytic isothermal
density, with potentially large effects on the emergent spectrum. This implies
that non-isothermal disk models must be used for a detailed modeling of Be star
disks.Comment: 22 pages, 9 figures, Ap
- …