966 research outputs found
Quantum phase diagram of an exactly solved mixed spin ladder
We investigate the quantum phase diagram of the exactly solved mixed
spin-(1/2,1) ladder via the thermodynamic Bethe ansatz (TBA). In the absence of
a magnetic field the model exhibits three quantum phases associated with su(2),
su(4) and su(6) symmetries. In the presence of a strong magnetic field, there
is a third and full saturation magnetization plateaux within the strong
antiferromagnetic rung coupling regime. Gapless and gapped phases appear in
turn as the magnetic field increases. For weak rung coupling, the fractional
magnetization plateau vanishs and exhibits new quantum phase transitions.
However, in the ferromagnetic coupling regime, the system does not have a third
saturation magnetization plat eau. The critical behaviour in the vicinity of
the critical points is also derived systematically using the TBA.Comment: 20 pages, 2 figure
SpinSpotter: An Automated Algorithm for Identifying Stellar Rotation Periods With Autocorrelation Analysis
Spinspotter is a robust and automated algorithm designed to extract stellar
rotation periods from large photometric datasets with minimal supervision. Our
approach uses the autocorrelation function (ACF) to identify stellar rotation
periods up to one-third the observational baseline of the data. Our algorithm
also provides a suite of diagnostics that describe the features in the ACF,
which allows the user to fine-tune the tolerance with which to accept a period
detection. We apply it to approximately 130,000 main-sequence stars observed by
the Transiting Exoplanet Survey Satellite (TESS) at 2-minute cadence during
Sectors 1-26, and identify rotation periods for 13,504 stars ranging from 0.4
to 14 days. We demonstrate good agreement between our sample and known values
from the literature and note key differences between our population of rotators
and those previously identified in the Kepler field, most notably a large
population of fast-rotating M dwarfs. Our sample of rotating stars provides a
data set with coverage of nearly the entire sky that can be used as a basis for
future gyrochronological studies, and, when combined with proper motions and
distances from Gaia, to search for regions with high densities of young stars,
thus identifying areas of recent star formation and undiscovered moving group
members. Our algorithm is publicly available for download and use on GitHub.Comment: 14 pages, 5 figures, Accepted for publication in The Astrophysical
Journa
Assessing dolomite surface reactivity at temperatures from 40 to 120 degrees C by hydrothermal atomic force microscopy
This study investigated the reactivity of the (1 0 4) dolomite surface in the system MgCO3âCaCO3âNaClâH2O via a suite of aqueous solutionâdolomite hydrothermal atomic force microscopy interaction experiments at temperatures from 40 to 120 °C, pH ranging from 4 to 8, pressures up to 5 bars, and over a wide range of aqueous fluid saturation state. Dolomite dissolution was observed in the presence of undersaturated aqueous fluids. Dissolution produced crystallographically well defined etch pits, consistent with the stoichiometric release of ordered lattice cations. In low to moderately saturated fluids, dolomite growth began by the growth of one or two layers of carbonate (layer height <3 Ă
) which morphologically reproduced the initial surface features, resembling the template effect as previously described by Astilleros et al. (2003, 2006) and Freij et al. (2004). Further growth was strongly inhibited and did not show any systematic crystallographically orientated growth morphologies. At aqueous fluid saturation states exceeding 500, nucleation and growth was observed on the dolomite surfaces at moderate rates, but these did not exhibit the characteristic dolomite crystallographic orientation after the growth of several layers. Taken together these observations suggest that the direct precipitation of dolomite from aqueous solution is disfavored at temperatures to at least 120 °C due to the poisoning of the dolomite surface for further growth by the precipitation of one to four CaâMg carbonate layers on these surfaces
Final targeting strategy for the sloan digital sky survey IV Apache Point Observatory galactic evolution experiment 2 North Survey
ArtĂculo escrito por mĂĄs de 60 autores.The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is a dual-hemisphere, near-infrared (NIR), spectroscopic survey with the goal of producing a chemodynamical mapping of the Milky Way. The targeting for APOGEE-2 is complex and has evolved with time. In this paper, we present the updates and additions to the initial targeting strategy for APOGEE-2N presented in Zasowski et al. (2017). These modifications come in two implementation modes: (i) âAncillary Science Programsâ competitively awarded to Sloan Digital Sky Survey IV PIs through proposal calls in 2015 and 2017 for the pursuit of new scientific avenues outside the main survey, and (ii) an effective 1.5 yr expansion of the survey, known as the Bright Time Extension (BTX), made posible through accrued efficiency gains over the first years of the APOGEE-2N project. For the 23 distinct ancillary programs, we provide descriptions of the scientific aims, target selection, and how to identify these targets within the APOGEE-2 sample. The BTX permitted changes to the main survey strategy, the inclusion of new programs in response to scientific discoveries or to exploit major new data sets not available at the outset of the survey design, and expansions of existing programs to enhance their scientific success and reach. After describing the motivations, implementation, and assessment of these programs, we also leave a summary of lessons learned from nearly a decade of APOGEE-1 and APOGEE-2 survey operations. A companion paper, F. Santana et al. (submitted; AAS29036), provides a complementary presentation of targeting modifications relevant to APOGEE-2 operations in the Southern Hemisphere
The surface area and reactivity of granitic soils: I. Dissolution rates of primary minerals as a function of depth and age deduced from field observations
Surface area-normalised dissolution rates of the primary minerals in two distinct granitic soils located in 1) the Dartmoor National Park, England and 2) Glen Dye, Scotland were determined as a function of depth. Each soil was sampled to a depth of ~ 1 m. The maximum soil ages based on 14C analysis of the humin fraction of the soil are 15,600 and 4400 years for the Dartmoor and Glen Dye soil profiles, respectively. The measured BET surface areas of the soil minerals are close to 5 m2/g in the B and C horizons, but decrease to less than 1 m2/g close to the surface. Retrieved geometric surface area normalised mineral dissolution rates are most rapid at the surface and at the bedrockâsoil interface; this behaviour is interpreted to stem from a combination of the approach to equilibrium of the soil waters with depth and more rapid dissolution rates of fresh versus weathered surfaces. At the soil surface, the relative mineral dissolution rate order is found to be quartz > feldspar > mica, with quartz geometric surface area dissolution rates as fast as 2.6 to 4.1 Ă 10â 13 mol/m2/s. As observed in a number of past studies, field based rates obtained in this study are significantly slower than corresponding rates obtained from laboratory studies, suggesting that these latter rates may not accurately describe the reactivity of primary minerals in soils
Integrable models and quantum spin ladders: comparison between theory and experiment for the strong coupling ladder compounds
(abbreviated) This article considers recent advances in the investigation of
the thermal and magnetic properties of integrable spin ladder models and their
applicability to the physics of real compounds. The ground state properties of
the integrable two-leg spin-1/2 and the mixed spin-(1/2,1) ladder models at
zero temperature are analyzed by means of the Thermodynamic Bethe Ansatz.
Solving the TBA equations yields exact results for the critical fields and
critical behaviour. The thermal and magnetic properties of the models are
investigated in terms of the recently introduced High Temperature Expansion
method, which is discussed in detail. It is shown that in the strong coupling
limit the integrable spin-1/2 ladder model exhibits three quantum phases: (i) a
gapped phase in the regime , (ii) a fully polarised phase for
, and (iii) a Luttinger liquid magnetic phase in the regime
. The critical behaviour in the vicinity of the critical
points is of the Pokrovsky-Talapov type. The temperature-dependent thermal and
magnetic properties are directly evaluated from the exact free energy
expression and compared to known experimental results for a range of strong
coupling ladder compounds. Similar analysis of the mixed spin-(1/2,1) ladder
model reveals a rich phase diagram, with a 1/3 and a full saturation
magnetisation plateau within the strong antiferromagnetic rung coupling regime.
For weak rung coupling, the fractional magnetisation plateau is diminished and
a new quantum phase transition occurs. The phase diagram can be directly
deduced from the magnetisation curve obtained from the exact result derived
from the HTE. The thermodynamics of the spin-orbital model with different
single-ion anisotropies is also investigated.Comment: 90 pages, 33 figures, extensive revisio
Is philosophy of education a historical mistake? Connecting philosophy and education differently
In this article, I suggest that the question whether the proper place for philosophy of education is in the domain of philosophy or the domain of education cannot be resolved as long as we think of the connection between philosophy and education in terms of the idea of 'philosophy of education'. To substantiate this point, I look into the history of the idea of 'philosophy of education', both as a general idea and with regard to the way in which it became institutionalised in universities in the English-speaking world. I contrast this with the way in which the academic study of education developed in German-speaking countries in order to highlight that 'philosophy of education' is not the only way in which philosophy and education can be connected. Being aware that the connection between philosophy and education can be made differently not only provides a way out of the discussion about the proper identity and location of philosophy of education, but also hints at forms of philosophically informed scholarship that are more firmly based with the academic field of education rather than that they remain a halfway house in between philosophy and education
Evidence for the super Tonks-Girardeau gas
We provide evidence in support of a recent proposal by Astrakharchik at al.
for the existence of a super Tonks-Girardeau gas-like state in the attractive
interaction regime of quasi-one-dimensional Bose gases. We show that the super
Tonks-Giradeau gas-like state corresponds to a highly-excited Bethe state in
the integrable interacting Bose gas for which the bosons acquire hard-core
behaviour. The gas-like state properties vary smoothly throughout a wide range
from strong repulsion to strong attraction. There is an additional stable
gas-like phase in this regime in which the bosons form two-body bound states
behaving like hard-core bosons.Comment: 10 pages, 1 figure, 2 tables, additional text on the stability of the
super T-G gas-like stat
- âŠ