10,079 research outputs found

    Atomic Model of Susy Hubbard Operators

    Full text link
    We apply the recently proposed susy Hubbard operators to an atomic model. In the limiting case of free spins, we derive exact results for the entropy which are compared with a mean field + gaussian corrections description. We show how these results can be extended to the case of charge fluctuations and calculate exact results for the partition function, free energy and heat capacity of an atomic model for some simple examples. Wavefunctions of possible states are listed. We compare the accuracy of large N expansions of the susy spin operators with those obtained using `Schwinger bosons' and `Abrikosov pseudo-fermions'. For the atomic model, we compare results of slave boson, slave fermion, and susy Hubbard operator approximations in the physically interesting but uncontrolled limiting case of N->2. For a mixed representation of spins we estimate the accuracy of large N expansions of the atomic model. In the single box limit, we find that the lowest energy saddle-point solution reduces to simply either slave bosons or slave fermions, while for higher boxes this is not the case. The highest energy saddle-point solution has the interesting feature that it admits a small region of a mixed representation, which bears a superficial resemblance to that seen experimentally close to an antiferromagnetic quantum critical point.Comment: 17 pages + 7 pages Appendices, 14 figures. Substantial revision

    Exponentially Large Probabilities in Quantum Gravity

    Full text link
    The problem of topology change transitions in quantum gravity is investigated from the Wheeler-de Witt wave function point of view. It is argued that for all theories allowing wormhole effects the wave function of the universe is exponentially large. If the wormhole action is positive, one can try to overcome this difficulty by redefinition of the inner product, while for the case of negative wormhole action the more serious problems arise.Comment: 9 pages in LaTeX, 4 figures in PostScript, the brief version of this paper is to appear in Proceedings of the XXIV ITEP Winter School of Physic

    Failure of Mean Field Theory at Large N

    Full text link
    We study strongly coupled lattice QCD with NN colors of staggered fermions in 3+1 dimensions. While mean field theory describes the low temperature behavior of this theory at large NN, it fails in the scaling region close to the finite temperature second order chiral phase transition. The universal critical region close to the phase transition belongs to the 3d XY universality class even when NN becomes large. This is in contrast to Gross-Neveu models where the critical region shrinks as NN (the number of flavors) increases and mean field theory is expected to describe the phase transition exactly in the limit of infinite NN. Our work demonstrates that close to second order phase transitions infrared fluctuations can sometimes be important even when NN is strictly infinite.Comment: 4 pages, 3 figure

    Co-operative Kondo Effect in the two-channel Kondo Lattice

    Full text link
    We discuss the possibility of a co-operative Kondo effect driven by channel interference in a Kondo lattice where local moments are coupled to a single Fermi sea via two orthogonal scattering channels. In this situation, the channel quantum number is not conserved. We argue that the absence of channel conservation causes the Kondo effect in the two channels to constructively interfere, giving rise to a superconducting condensate of composite pairs, formed between the local moments and the conduction electrons. Our arguments are based on the observation that a heavy Fermi surface gives rise to zero modes for Kondo singlets to fluctuate between screening channels of different symmetry, producing a divergent composite pair susceptibility. Secondary screening channels couple to these divergent fluctuations, promoting an instability into a state with long-range composite order. We present detailed a detailed mean-field theory for this superconducting phase, and discuss the possible implications for heavy fermion physics.Comment: 23 double column pages. 9 fig

    Fermionic Determinant of the Massive Schwinger Model

    Full text link
    A representation for the fermionic determinant of the massive Schwinger model, or QED2QED_2, is obtained that makes a clean separation between the Schwinger model and its massive counterpart. From this it is shown that the index theorem for QED2QED_2 follows from gauge invariance, that the Schwinger model's contribution to the determinant is canceled in the weak field limit, and that the determinant vanishes when the field strength is sufficiently strong to form a zero-energy bound state

    Exact calculation of the radiatively-induced Lorentz and CPT violation in QED

    Get PDF
    Radiative corrections arising from the axial coupling of charged fermions to a constant vector b_\mu can induce a Lorentz- and CPT-violating Chern-Simons term in the QED action. We calculate the exact one-loop correction to this term keeping the full b_\mu dependence, and show that in the physically interesting cases it coincides with the lowest-order result. The effect of regularization and renormalization and the implications of the result are briefly discussed.Comment: LaTex, 8 pages; minor correction

    Radiative Contributions to the Effective Action of Self-Interacting Scalar Field on a Manifold with Boundary

    Get PDF
    The effect of quantum corrections to a conformally invariant field theory for a self-interacting scalar field on a curved manifold with boundary is considered. The analysis is most easily performed in a space of constant curvature the boundary of which is characterised by constant extrinsic curvature. An extension of the spherical formulation in the presence of a boundary is attained through use of the method of images. Contrary to the consolidated vanishing effect in maximally symmetric space-times the contribution of the massless "tadpole" diagram no longer vanishes in dimensional regularisation. As a result, conformal invariance is broken due to boundary-related vacuum contributions. The evaluation of one-loop contributions to the two-point function suggests an extension, in the presence of matter couplings, of the simultaneous volume and boundary renormalisation in the effective action.Comment: 14 pages, 1 figure. Additional references and minor elucidating remarks added. To appear in Classical and Quantum Gravit

    Q-instantons

    Get PDF
    We construct the half-supersymmetric instanton solutions that are electric-magnetically dual to the recently discussed half-supersymmetric Q7-branes. We call these instantons `Q-instantons'. Whereas the D-instanton is most conveniently described using the RR axion \chi and the dilaton \phi, the Q-instanton is most conveniently described using a different set of fields \chi' and T, where \chi' is an axionic scalar. The real part of the Q-instanton on-shell action is a function of T and the imaginary part is linear in \chi'. Discrete shifts of the axion \chi' correspond to PSL(2,Z) transformations that are of finite order. These are e.g. pure S-duality transformations relating weak and strongly coupled regimes. We argue that near each orbifold point of the quantum axion-dilaton moduli space PSL(2,Z)\PSL(2,R)/SO(2) the higher order R^4 terms in the string effective action contain contributions from an infinite sum of single multiply-charged instantons with the Q-instantons corresponding to the orbifold points \tau=i,\rho where \tau is the complex axion-dilaton field.Comment: 29 pages, 1 figur

    Visions of a more precise soil biology

    Get PDF
    Includes bibliographical references (pages 389-390).Soils have often been viewed as a black box. Soil biology is difficult to study with the precision we would wish, due to the presence of considerable soil heterogeneity, a huge diversity of organisms, and a plethora of interacting processes taking place in a complex physical-chemical environment. We have isolated a tiny fraction of the known organisms, and the possible interactions of soil parent materials, landscape, land use, depth and time with the biota mean that we are to some extent still fumbling in the dark. There have been great advances, but we argue that the pace of advance could be faster. To progress, science needs new theory and concepts but also acceptable methodologies. Coherent and generally accepted theoretical knowledge exists in many areas, but there is a shortage of valid and exact methods to test new and sometimes even old hypotheses. New methods add knowledge, but they also can add to the confusion if they are not tied to the existing knowledge base. We speculate on how to improve soil biology through improving the way we perform and interpret research. Can we deal with soil variability? Can we measure the critical variables with adequate precision to test our hypotheses? Can we avoid reinventing the wheel? Can we find a balance between the freedom to test new and maybe even controversial ideas and the control and direction of research required by society?

    The Exact Critical Bubble Free Energy and the Effectiveness of Effective Potential Approximations

    Full text link
    To calculate the temperature at which a first-order cosmological phase transition occurs, one must calculate Fc(T)F_c(T), the free energy of a critical bubble configuration. Fc(T)F_c(T) is often approximated by the classical energy plus an integral over the bubble of the effective potential; one must choose a method for calculating the effective potential when V′′<0V''<0. We test different effective potential approximations at one loop. The agreement is best if one pulls a factor of μ4/T4\mu^4/T^4 into the decay rate prefactor [where μ2=V′′(ϕf)\mu^2 = V''(\phi_f)], and takes the real part of the effective potential in the region V′′<0V''<0. We perform a similar analysis on the 1-dimensional kink.Comment: 11 pages plus 3 figures in jyTeX; CALT-68-188
    • …
    corecore