42 research outputs found

    Effect of Injection Rate and Post-Fill Cure Pressure on Properties of Resin Transfer Molded Disks

    Get PDF
    The effects of flow rate andpost-fill cure pressure, i.e., packing pressure, on the mechanical properties of resin transfer molded disks are experimentally investigated. An experimental molding setup is constructed to fabricate fiber-reinforced, center-gated, disk-shaped composite parts. Disks are molded at different flow rates and packing pressures in order to observe the effects of these parameters on the mechanical properties andvoidcontent of the final parts. Specimens are cut from three different locations in the molded disks for testing. Specimens from the first two locations are tensile testedto obtain strength and stiffness properties, and the third location is usedfor microscopic analysis to determine void content and void properties. Increased injection rate is found to reduce both the strength and stiffness of the molded parts due to more voids induced by the faster moving fluidfront. Packing pressure is also foundto have a significant effect on specimen properties. At higher packing pressures fewer voids and improved strength andstiffness are observed. Mechanical properties are correlatedwith total void fraction for disks molded at different packing pressures. Exponential decrease in both tensile strength andelastic modulus is observedwith increasing voidfraction. Doubling the voidvolume fraction from 0.35 to 0.72% results in a 15% decrease in strength and a 14% decrease in stiffness. The results demonstrate that selection of suitable injection rate and addition of packing pressure to resin transfer molding (RTM) process can improve mechanical properties of molded parts considerably.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Performance of Glass Woven Fabric Composites with Admicellar-Coated Thin Elastomeric Interphase

    Get PDF
    Adequate stress transfer between the inorganic reinforcement and surrounding polymeric matrix is essential for achieving enhanced structural integrity and extended lifetime performance of fiber-reinforced composites. The insertion of an elastomeric interlayer helps increase the stress-transfer capabilities across the fiber/matrix interface and considerably reduces crack initiation phenomena at the fiber ends. In this study, admicellar polymerization is used to modify the fiber/matrix interface in glass woven fabric composites by forming thickness-controlled poly(styrene-co-isoprene) coatings. These admicellar interphases have distinct characteristics (e.g., topology and surface coverage) depending on the surfactant/monomer (S/M) ratios used during the polymerization reaction. Overall, the admicellar coatings have a positive effect on the mechanical response of resin transfer molded (RTM), E-glass/epoxy parts. For instance, ultimate tensile strength (UTS) of composites with admicellar sizings improved 50 to 55% over the control desized samples. Interlaminar shear strength (ILSS) also showed increases ranging from 18 to 38% over the same control group. Interestingly, the flexural properties of these composites proved sensitive to the type of interphase formed for various admicellar polymerization conditions. Higher surface coverage and film connectedness in admicellar polymeric sizings are observed to enhance stress transfer at the interfacial region.Ye

    Porosity Reduction in the High-Speed Processing of Glass-Fiber Composites by Resin Transfer Molding (RTM)

    Get PDF
    High-speed processing is essential to achieve lower production cost in the fabrication of fiber-reinforced composites with the current liquid molding practices. A major consequence of increasing the resin injection velocity is the formation of defects such as voids and dry regions that decrease the load-bearing capability of the composite. Void formation mechanisms and analytical predictions of the detrimental effect of porosity on the structural integrity of molded parts have been studied extensively. In contrast, knowledge of void removal strategies is very limited. In this investigation, various postfill pressure levels were applied to disk-shaped random-mat glass/epoxy parts molded at high volumetric flow rates as a method to reduce their voidage content. Quantitative image analysis over cross-sections cut from these composites revealed that significant changes in porosity concentration take place with the postfill pressure. For instance, overall void content dropped more than 70% with the application of a postfill pressure as low as 300 kPa. Other important void morphometry characteristics such as void shape, size, and spatial distribution could also be manipulated by this method. As the packing pressure increases, large voids gradually disappear, and at the same time, the small circular voids are mobilized towards radial locations near the vents. In addition to this spatial voidage gradient in the radial direction, voidage gradient also exists through the specimen thickness. It seems that higher front velocities promote the appearance of secondary flow phenomena inside the mold cavity (e.g. microfountain flow), which may explain why more voids tend to concentrate at the surface of the specimen irrespective of the postfill pressure level reached inside the mold.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    A Flow Induced Autoimmune Response and Accelerated Senescence of Red Blood Cells in Cardiovascular Devices

    Get PDF
    Red blood cells (RBCs) passing through heart pumps, prosthetic heart valves and other cardiovascular devices undergo early senescence attributed to non-physiologic forces. We hypothesized that mechanical trauma accelerates aging by deformation of membrane proteins to cause binding of naturally occurring IgG. RBCs isolated from blood of healthy volunteers were exposed to high shear stress in a viscometer or microfluidics channel to mimic mechanical trauma and then incubated with autologous plasma. Increased binding of IgG was observed indicating forces caused conformational changes in a membrane protein exposing an epitope(s), probably the senescent cell antigen of band 3. The binding of immunoglobulin suggests it plays a role in the premature sequestration and phagocytosis of RBCs in the spleen. Measurement of IgG holds promise as a marker foreshadowing complications in cardiovascular patients and as a means to improve the design of medical devices in which RBCs are susceptible to sublethal trauma.Research in this publication was supported by the National Institutes of Health Small Business Innovation Research program under award number R44HL114246 as a subcontract to the University of Oklahoma from VADovations and NIH grant R21HL132286 to DWS and TAS. Open Access fees paid for in whole or in part by the University of Oklahoma Libraries.Ye

    Divalent Metal Ions Tune the Self-Splicing Reaction of the Yeast Mitochondrial Group II Intron Sc.ai5γ

    Full text link
    Group II introns are large ribozymes, consisting of six functionally distinct domains that assemble in the presence of Mg2+ to the active structure catalyzing a variety of reactions. The first step of intron splicing is well characterized by a Michaelis–Menten-type cleavage reaction using a two-piece group II intron: the substrate RNA, the 5′-exon covalently linked to domains 1, 2, and 3, is cleaved upon addition of domain 5 acting as a catalyst. Here we investigate the effect of Ca2+, Mn2+, Ni2+, Zn2+, Cd2+, Pb2+, and [Co(NH3)6]3+ on the first step of splicing of the Saccharomyces cerevisiae mitochondrial group II intron Sc.ai5γ. We find that this group II intron is very sensitive to the presence of divalent metal ions other than Mg2+. For example, the presence of only 5% Ca2+ relative to Mg2+ results in a decrease in the maximal turnover rate k cat by 50%. Ca2+ thereby has a twofold effect: this metal ion interferes initially with folding, but then also competes directly with Mg2+ in the folded state, the latter being indicative of at least one specific Ca2+ binding pocket interfering directly with catalysis. Similar results are obtained with Mn2+, Cd2+, and [Co(NH3)6]3+. Ni2+ is a much more powerful inhibitor and the presence of either Zn2+ or Pb2+ leads to rapid degradation of the RNA. These results show a surprising sensitivity of such a large multidomain RNA on trace amounts of cations other than Mg2+ and raises the question of biological relevance at least in the case of Ca2+
    corecore