311 research outputs found

    Generalized Uncertainty Principle and the Ramsauer-Townsend Effect

    Full text link
    The scattering cross section of electrons in noble gas atoms exhibits a minimum value at electron energies of approximately 1eV. This is the Ramsauer-Townsend effect. In this letter, we study the Ramsauer-Townsend effect in the framework of the Generalized Uncertainty Principle.Comment: 11 pages, 3 figure

    Loop Quantum Gravity Modification of the Compton Effect

    Get PDF
    Modified dispersion relations(MDRs) as a manifestation of Lorentz invariance violation, have been appeared in alternative approaches to quantum gravity problem. Loop quantum gravity is one of these approaches which evidently requires modification of dispersion relations. These MDRs will affect the usual formulation of the Compton effect. The purpose of this paper is to incorporate the effects of loop quantum gravity MDRs on the formulation of Compton scattering. Using limitations imposed on MDRs parameters from Ultra High Energy Cosmic Rays(UHECR), we estimate the quantum gravity-induced wavelength shift of scattered photons in a typical Compton process. Possible experimental detection of this wavelength shift will provide strong support for underlying quantum gravity proposal.Comment: 12 pages, 2 eps figures, revised versio

    Effects of the Generalized Uncertainty Principle on the Inflation Parameters

    Full text link
    We investigate the effects of the generalized uncertainty principle on the inflationary dynamics of the early universe in both standard and braneworld viewpoint. We choose the Randall-Sundrum II model as our underlying braneworld scenario. We find that the quantum gravitational effects lead to a spectral index which is not scale invariant. Also, the amplitude of density fluctuations is reduced by increasing the strength of quantum gravitational corrections. However, the tensor-to-scalar ratio increases by incorporation of these quantum gravity effects. We outline possible manifestations of these quantum gravity effects in the recent and future observations.Comment: 11 pages, revised version with new references, Accepted for publication in IJMP

    Entropic force approach in a noncommutative charged black hole and the equivalence principle

    Full text link
    Recently, Verlinde has suggested a novel model of duality between thermodynamics and gravity which leads to an emergent phenomenon for the origin of gravity and general relativity. In this paper, we investigate some features of this model in the presence of noncommutative charged black hole by performing the method of coordinate coherent states representing smeared structures. We derive several quantities, e.g. temperature, energy and entropic force. Our approach clearly exhibits that the entropic force on a smallest fundamental cell of holographic surface with radius r0r_0 is halted. Accordingly, we can conclude that the black hole remnants are absolutely inert without gravitational interactions. So, the equivalence principle of general relativity is contravened due to the fact that it is now possible to find a difference between the gravitational and inertial mass. In other words, the gravitational mass in the remnant size does not emit any gravitational field, therefore it is experienced to be zero, contrary to the inertial mass. This phenomenon illustrates a good example for a feasible experimental confirmation to the entropic picture of Newton's Second law in very short distances.Comment: 11 pages, 2 figure

    Cosmological LTB Black Hole in a Quintom Universe

    Full text link
    We study cosmological Lemaitre-Tolman-Bondi (LTB) black hole thermodynamics immersed in a quintom universe. We investigate some thermodynamic aspects of such a black hole in detail. We apply two methods of treating particles' tunneling from the apparent horizons and calculate the black hole's temperature in each method; the results of which are the same. In addition, by considering specific time slices in cosmic history, we study the thermodynamic features of this black hole in these specific cosmic epochs. Also, we discuss the information loss problem and the remnant content of the cosmological black hole in different cosmic epochs in this context. We show that approximately in all cosmic history, the temperature of the black hole's apparent horizon is more than the temperature of the cosmological apparent horizon

    Did I say dog or cat? A study of semantic error detection and correction in children

    Get PDF
    Although naturalistic studies of spontaneous speech suggest that young children can monitor their speech, the mechanisms for detection and correction of speech errors in children are not well understood. In particular, there is little research on monitoring semantic errors in this population. This study provides a systematic investigation of detection and correction of semantic errors in children between the ages of 5 and 8 years as they produced sentences to describe simple visual events involving nine highly familiar animals (the moving animals task). Results showed that older children made fewer errors and corrected a larger proportion of the errors that they made than younger children. We then tested the prediction of a production-based account of error monitoring that the strength of the language production system, and specifically its semantic–lexical component, should be correlated with the ability to detect and repair semantic errors. Strength of semantic–lexical mapping, as well as lexical–phonological mapping, was estimated individually for children by fitting their error patterns, obtained from an independent picture-naming task, to a computational model of language production. Children’s picture-naming performance was predictive of their ability to monitor their semantic errors above and beyond age. This relationship was specific to the strength of the semantic–lexical part of the system, as predicted by the production-based monitor

    Tunneling of massive and charged particles from noncommutative Reissner-Nordstr\"{o}m black hole

    Full text link
    Massive charged and uncharged particles tunneling from commutative Reissner-Nordstrom black hole horizon has been studied with details in literature. Here, by adopting the coherent state picture of spacetime noncommutativity, we study tunneling of massive and charged particles from a noncommutative inspired Reissner-Nordstrom black hole horizon. We show that Hawking radiation in this case is not purely thermal and there are correlations between emitted modes. These correlations may provide a solution to the information loss problem. We also study thermodynamics of noncommutative horizon in this setup.Comment: 10 pages, 2 figure

    On the dissipative non-minimal braneworld inflation

    Full text link
    We study the effects of the non-minimal coupling on the dissipative dynamics of the warm inflation in a braneworld setup, where the inflaton field is non-minimally coupled to induced gravity on the warped DGP brane. We study with details the effects of the non-minimal coupling and dissipation on the inflationary dynamics on the normal DGP branch of this scenario in the high-dissipation and high-energy regime. We show that incorporation of the non-minimal coupling in this setup decreases the number of e-folds relative to the minimal case. We also compare our model parameters with recent observational data.Comment: 32 pages, 6 figures. arXiv admin note: substantial text overlap with arXiv:1001.044

    Minimal Length and the Quantum Bouncer: A Nonperturbative Study

    Full text link
    We present the energy eigenvalues of a quantum bouncer in the framework of the Generalized (Gravitational) Uncertainty Principle (GUP) via quantum mechanical and semiclassical schemes. In this paper, we use two equivalent nonperturbative representations of a deformed commutation relation in the form [X,P]=i\hbar(1+\beta P^2) where \beta is the GUP parameter. The new representation is formally self-adjoint and preserves the ordinary nature of the position operator. We show that both representations result in the same modified semiclassical energy spectrum and agrees well with the quantum mechanical description.Comment: 14 pages, 2 figures, to appear in Int. J. Theor. Phy
    • …
    corecore