2,319 research outputs found

    TDIR: Time-Delay Interferometric Ranging for Space-Borne Gravitational-Wave Detectors

    Full text link
    Space-borne interferometric gravitational-wave detectors, sensitive in the low-frequency (mHz) band, will fly in the next decade. In these detectors, the spacecraft-to-spacecraft light-travel times will necessarily be unequal and time-varying, and (because of aberration) will have different values on up- and down-links. In such unequal-armlength interferometers, laser phase noise will be canceled by taking linear combinations of the laser-phase observables measured between pairs of spacecraft, appropriately time-shifted by the light propagation times along the corresponding arms. This procedure, known as time-delay interferometry (TDI), requires an accurate knowledge of the light-time delays as functions of time. Here we propose a high-accuracy technique to estimate these time delays and study its use in the context of the Laser Interferometer Space Antenna (LISA) mission. We refer to this ranging technique, which relies on the TDI combinations themselves, as Time-Delay Interferometric Ranging (TDIR). For every TDI combination, we show that, by minimizing the rms power in that combination (averaged over integration times 104\sim 10^4 s) with respect to the time-delay parameters, we obtain estimates of the time delays accurate enough to cancel laser noise to a level well below the secondary noises. Thus TDIR allows the implementation of TDI without the use of dedicated inter-spacecraft ranging systems, with a potential simplification of the LISA design. In this paper we define the TDIR procedure formally, and we characterize its expected performance via simulations with the \textit{Synthetic LISA} software package.Comment: 5 pages, 2 figure

    LISA Science Results in the Presence of Data Disturbances

    Full text link
    Each spacecraft in the Laser Interferometer Space Antenna houses a proof mass which follows a geodesic through spacetime. Disturbances which change the proof mass position, momentum, and/or acceleration will appear in the LISA data stream as additive quadratic functions. These data disturbances inhibit signal extraction and must be removed. In this paper we discuss the identification and fitting of monochromatic signals in the data set in the presence of data disturbances. We also present a preliminary analysis of the extent of science result limitations with respect to the frequency of data disturbances

    An Estimation of the Gamma-Ray Burst Afterglow Apparent Optical Brightness Distribution Function

    Full text link
    By using recent publicly available observational data obtained in conjunction with the NASA Swift gamma-ray burst mission and a novel data analysis technique, we have been able to make some rough estimates of the GRB afterglow apparent optical brightness distribution function. The results suggest that 71% of all burst afterglows have optical magnitudes with mR < 22.1 at 1000 seconds after the burst onset, the dimmest detected object in the data sample. There is a strong indication that the apparent optical magnitude distribution function peaks at mR ~ 19.5. Such estimates may prove useful in guiding future plans to improve GRB counterpart observation programs. The employed numerical techniques might find application in a variety of other data analysis problems in which the intrinsic distributions must be inferred from a heterogeneous sample.Comment: 15 pages including 2 tables and 7 figures, accepted for publication in Ap

    Defect-Mediated Emulsification in Two Dimensions

    Get PDF
    We consider two dimensional dispersions of droplets of isotropic phase in a liquid with an XY-like order parameter, tilt, nematic, and hexatic symmetries being included. Strong anchoring boundary conditions are assumed. Textures for a single droplet and a pair of droplets are calculated and a universal droplet-droplet pair potential is obtained. The interaction of dispersed droplets via the ordered phase is attractive at large distances and repulsive at short distances, which results in a well defined preferred separation for two droplets and topological stabilization of the emulsion. This interaction also drives self-assembly into chains. Preferred separations and energy barriers to coalescence are calculated, and effects of thermal fluctuations and film thickness are discussed.Comment: revtex4, 13 pages, 12 figure

    A Deep Multicolor Survey V: The M Dwarf Luminosity Function

    Get PDF
    We present a study of M dwarfs discovered in a large area, multicolor survey. We employ a combination of morphological and color criteria to select M dwarfs to a limiting magnitude in V of 22, the deepest such ground-based survey for M dwarfs to date. We solve for the vertical disk stellar density law and use the resulting parameters to derive the M dwarf luminosity and mass functions from this sample. We find the stellar luminosity function peaks at M_V = 12 and declines thereafter. Our derived mass function for stars with M < 0.6 M_sun is inconsistent with a Salpeter function at the 3 sigma level; instead, we find the mass function is relatively flat for 0.6 M_sun > M > 0.1 M_sun.Comment: Accepted for publication in AJ. 19 pages including 4 embedded postscript figures (AASTEX

    Improved Stack-Slide Searches for Gravitational-Wave Pulsars

    Full text link
    We formulate and optimize a computational search strategy for detecting gravitational waves from isolated, previously-unknown neutron stars (that is, neutron stars with unknown sky positions, spin frequencies, and spin-down parameters). It is well known that fully coherent searches over the relevant parameter-space volumes are not computationally feasible, and so more computationally efficient methods are called for. The first step in this direction was taken by Brady & Creighton (2000), who proposed and optimized a two-stage, stack-slide search algorithm. We generalize and otherwise improve upon the Brady-Creighton scheme in several ways. Like Brady & Creighton, we consider a stack-slide scheme, but here with an arbitrary number of semi-coherent stages and with a coherent follow-up stage at the end. We find that searches with three semi-coherent stages are significantly more efficient than two-stage searches (requiring about 2-5 times less computational power for the same sensitivity) and are only slightly less efficient than searches with four or more stages. We calculate the signal-to-noise ratio required for detection, as a function of computing power and neutron star spin-down-age, using our optimized searches.Comment: 19 pages, 7 figures, RevTeX

    Point Source Extraction with MOPEX

    Full text link
    MOPEX (MOsaicking and Point source EXtraction) is a package developed at the Spitzer Science Center for astronomical image processing. We report on the point source extraction capabilities of MOPEX. Point source extraction is implemented as a two step process: point source detection and profile fitting. Non-linear matched filtering of input images can be performed optionally to increase the signal-to-noise ratio and improve detection of faint point sources. Point Response Function (PRF) fitting of point sources produces the final point source list which includes the fluxes and improved positions of the point sources, along with other parameters characterizing the fit. Passive and active deblending allows for successful fitting of confused point sources. Aperture photometry can also be computed for every extracted point source for an unlimited number of aperture sizes. PRF is estimated directly from the input images. Implementation of efficient methods of background and noise estimation, and modified Simplex algorithm contribute to the computational efficiency of MOPEX. The package is implemented as a loosely connected set of perl scripts, where each script runs a number of modules written in C/C++. Input parameter setting is done through namelists, ASCII configuration files. We present applications of point source extraction to the mosaic images taken at 24 and 70 micron with the Multiband Imaging Photometer (MIPS) as part of the Spitzer extragalactic First Look Survey and to a Digital Sky Survey image. Completeness and reliability of point source extraction is computed using simulated data.Comment: 20 pages, 13 Postscript figures, accepted for publication in PAS

    The Lowest Mass White Dwarf

    Get PDF
    Extremely low mass white dwarfs are very rare objects likely formed in compact binary systems. We present MMT optical spectroscopy of 42 low mass white dwarf candidates serendipitously discovered in a survey for hypervelocity B-type stars. One of these objects, SDSS J0917+46, has Teff= 11,288 \pm 72 K and log g = 5.48 \pm 0.03; with an estimated mass of 0.17 M_sun, it is the lowest gravity/mass white dwarf currently known. However, 40 of the low mass candidates are normal DA white dwarfs with apparently inaccurate SDSS g magnitudes. We revisit the identification of low mass white dwarf candidates previously found in the SDSS, and conclude that four objects have M < 0.2 M_sun. None of these white dwarfs show excess emission from a binary companion, and radial velocity searches will be necessary to constrain the nature of the unseen companions.Comment: ApJ, accepted versio

    Detecting gravitational waves from precessing binaries of spinning compact objects. II. Search implementation for low-mass binaries

    Get PDF
    Detection template families (DTFs) are built to capture the essential features of true gravitational waveforms using a small set of phenomenological waveform parameters. Buonanno, Chen, and Vallisneri [Phys. Rev. D 67, 104025 (2003)] proposed the ``BCV2'' DTF to perform computationally efficient searches for signals from precessing binaries of compact stellar objects. Here we test the signal-matching performance of the BCV2 DTF for asymmetric--mass-ratio binaries, and specifically for double--black-hole binaries with component masses (m1,m2): (6~12Msun, 1~3Msun), and for black-hole--neutron-star binaries with component masses (m1,m2) = (10Msun, 1.4Msun); we take all black holes to be maximally spinning. We find a satisfactory signal-matching performance, with fitting factors averaging between 0.94 and 0.98. We also scope out the region of BCV2 parameters needed for a template-based search, we evaluate the template match metric, we discuss a template-placement strategy, and we estimate the number of templates needed for searches at the LIGO design sensitivity. In addition, after gaining more insight in the dynamics of spin--orbit precession, we propose a modification of the BCV2 DTF that is parametrized by physical (rather than phenomenological) parameters. We test this modified ``BCV2P'' DTF for the (10Msun, 1.4Msun) black-hole--neutron-star system, finding a signal-matching performance comparable to the BCV2 DTF, and a reliable parameter-estimation capability for target-binary quantities such as the chirp mass and the opening angle (the angle between the black-hole spin and the orbital angular momentum).Comment: 18 pages, 15 figure
    corecore