10 research outputs found

    Chemiluminescence response induced by mesenteric ischaemia/reperfusion: effect of antioxidative compounds ex vivo

    Get PDF
    Ischaemia and reperfusion (I/R) play an important role in human pathophysiology as they occur in many clinical conditions and are associated with high morbidity and mortality. Interruption of blood supply rapidly damages metabolically active tissues. Restoration of blood flow after a period of ischaemia may further worsen cell injury due to an increased formation of free radicals. The aim of our work was to assess macroscopically the extent of intestinal pathological changes caused by mesenteric I/R, and to study free radical production by luminol enhanced chemiluminescence (CL) of ileal samples. In further experiments, the antioxidative activity of the drugs tested was evaluated spectrophotometrically by the use of the DPPH radical. We studied the potential protective ex vivo effect of the plant origin compound arbutin as well as of the pyridoindole stobadine and its derivative SMe1EC2. I/R induced pronounced haemorrhagic intestinal injury accompanied by increase of myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGA) activity. Compared to sham operated (control) rats, there was only a slight increase of CL response after I/R, probably in association with neutrophil increase, indicated by enhanced MPO activity. All compounds significantly reduced the peak values of CL responses of the ileal samples ex vivo, thus reducing the I/R induced increase of free radical production. The antioxidants studied showed a similar inhibitory effect on the CL response influenced by mesenteric I/R. If proved in vivo, these compounds would represent potentially useful therapeutic antioxidants

    Evaluation of developmental neurotoxicity: some important issues focused on neurobehavioral development

    Get PDF
    Exposure of the developing organism to industrial chemicals and physical factors represents a serious risk factor for the development of neurobehavioral disorders, such as attention-deficit hyperactivity disorder, autism and mental retardation. Appropriate animal models are needed to test potentially harmful effects and mechanisms of developmental neurotoxicity of various chemical substances. However, there are significant human vs. rat differences in the brain developmental profile which should be taken into account in neurotoxicity studies. Subtle behavioral alterations are hard to detect by traditional developmental toxicity and teratogenicity studies, and in many cases they remain hidden. They can however be revealed by using special behavioral, endocrine and/or pharmacological challenges, such as repeated behavioral testing, exposure to single stressful stimulus or drugs. Further, current neurobehavioral test protocols recommend to test animals up to their adulthood. However some behavioral alterations, such as anxiety-like behavior or mental deficiency, may become manifest in later periods of development. Our experimental and scientific experiences are highly suggestive for a complex approach in testing potential developmental neurotoxicity. Strong emphasis should be given on repeated behavioral testing of animals up to senescence and on using proper pharmacological and/or stressful challenges

    Protection of the vascular endothelium in experimental situations

    Get PDF
    One of the factors proposed as mediators of vascular dysfunction observed in diabetes is the increased generation of reactive oxygen species (ROS). This provides support for the use of antioxidants as early and appropriate pharmacological intervention in the development of late diabetic complications. In streptozotocin (STZ)-induced diabetes in rats we observed endothelial dysfuction manifested by reduced endothelium-dependent response to acetylcholine of the superior mesenteric artery (SMA) and aorta, as well as by increased endothelaemia. Changes in endothelium-dependent relaxation of SMA were induced by injury of the nitric oxide radical (·NO)-signalling pathway since the endothelium-derived hyperpolarising factor (EDHF)-component of relaxation was not impaired by diabetes. The endothelial dysfunction was accompanied by decreased ·NO bioavailabity as a consequence of reduced activity of eNOS rather than its reduced expression. The results obtained using the chemiluminiscence method (CL) argue for increased oxidative stress and increased ROS production. The enzyme NAD(P)H-oxidase problably participates in ROS production in the later phases of diabetes. Oxidative stress was also connected with decreased levels of reduced glutathione (GSH) in the early phase of diabetes. After 10 weeks of diabetes, adaptational mechanisms probably took place because GSH levels were not changed compared to controls. Antioxidant properties of SMe1EC2 found in vitro were partly confirmed in vivo. Administration of SMe1EC2 protected endothelial function. It significantly decreased endothelaemia of diabetic rats and improved endothelium-dependent relaxation of arteries, slightly decreased ROS-production and increased bioavailability of ·NO in the aorta. Further studies with higher doses of SMe1EC2 may clarify the mechanism of its endothelium-protective effect in vivo

    Experimental modeling of hypoxia in pregnancy and early postnatal life

    Get PDF
    The important role of equilibrium of environmental factors during the embryo-fetal period is undisputable. Women of reproductive age are increasingly exposed to various environmental risk factors such as hypoxia, prenatal viral infections, use of drugs, smoking, complications of birth or stressful life events. These early hazards represent an important risk for structural and/or functional maldevelopment of the fetus and neonates. Impairment of oxygen/energy supply during the pre- and perinatal period may affect neuronal functions and induce cell death. Thus when death of the newborn is not occurring following intrauterine hypoxia, various neurological deficits, including hyperactivity, learning disabilities, mental retardation, epilepsy, cerebral palsy, dystonia etc., may develop both in humans and in experimental animals. In our animal studies we used several approaches for modeling hypoxia in rats during pregnancy and shortly after delivery, i.e. chronic intrauterine hypoxia induced by the antiepileptic drug phenytoin, neonatal anoxia by decreased oxygen saturation in 2-day-old pups. Using these models we were able to test potential protective properties of natural (vitamin E, melatonin) and synthetic (stobadine) compounds. Based on our results, stobadine was also able to reduce hypoxia-induced hyperactivity and the antioxidant capacity of stobadine exceeded that of vitamin E and melatonin, and contrary to vitamin E, stobadine had no adverse effects on developing fetus and offspring

    Glucan as a protective agent against mutagens

    No full text
    corecore