42 research outputs found
Nucleation of Stable Superconductivity in YBCO-Films
By means of the linear dynamic conductivity, inductively measured on
epitaxial films between 30mHz and 30 MHz, the transition line to
generic superconductivity is studied in fields between B=0 and 19T. It follows
closely the melting line described recently in terms of a blowout of
thermal vortex loops in clean materials. The critical exponents of the
correlation length and time near , however, seem to be dominated by
some intrinsic disorder. Columnar defects produced by heavy-ion irradiation up
to field-equivalent-doses of lead to a disappointing reduction
of while for the generic line of the pristine film
is recovered. These novel results are also discussed in terms of a loop-driven
destruction of generic superconductivity.Comment: 11 pages including 7 EPS figures, accepted for publication in the
Proceedings of the Spring Meeting of the German Physical Society, Muenster
1999,Festkoerperprobleme/Advances in Solid State Physics 199
Effect of mechanical stress on Zea root apex. I. Mechanical stress leads to the switch from closed to open meristem organization
The effect of mechanical stress on the root apical meristem (RAM) organization of Zea mays was investigated. In the experiment performed, root apices were grown through a narrowing of either circular (variant I) or elliptical (variant II) shape. This caused a mechanical impedance distributed circumferentially or from the opposite sides in variant I and II, respectively. The maximal force exerted by the growing root in response to the impedance reached the value of 0.15 N for variant I and 0.08 N for variant II. Significant morphological and anatomical changes were observed. The changes in morphology depended on the variant and concerned diminishing and/or deformation of the cross-section of the root apex, and buckling and swelling of the root. Anatomical changes, similar in both variants, concerned transformation of the meristem from closed to open, an increase in the number of the cell layers at the pole of the root proper, and atypical oblique divisions of the root cap cells. After leaving the narrowing, a return to both typical cellular organization and morphology of the apex was observed. The results are discussed in terms of three aspects: the morphological response, the RAM reorganization, and mechanical factors. Assuming that the orientation of division walls is affected by directional cues of a tensor nature, the changes mentioned may indicate that a pattern of such cues is modified when the root apex passes through the narrowing, but its primary mode is finally restored
Vortex Flow and Transverse Flux Screening at the Bose Glass Transition
We investigate the vortex phase diagram in untwinned YBaCuO single crystals
with columnar defects. These randomly distributed defects, produced by heavy
ion irradiation, are expected to induce a ``Bose Glass'' phase of localized
vortices characterized by a vanishing resistance and a Meissner effect for
magnetic fields transverse to the defect axis. We directly observe the
transverse Meissner effect using an array of Hall probe magnetometers. As
predicted, the Meissner state breaks down at temperatures Ts that decrease
linearly with increasing transverse magnetic field. However, Ts falls well
below the conventional melting temperature Tm determined by a vanishing
resistivity, suggesting an intermediate regime where flux lines are effectively
localized even when rotated off the columnar defects.Comment: 15 pages, 5 figure
Universality of Frequency and Field Scaling of the Conductivity Measured by Ac-Susceptibility of a Ybco-Film
Utilizing a novel and exact inversion scheme, we determine the complex linear
conductivity from the linear magnetic ac-susceptibility
which has been measured from 3\,mHz to 50\,MHz in fields between 0.4\,T and
4\,T applied parallel to the c-axis of a 250\,nm thin disk. The frequency
derivative of the phase and the dynamical scaling of
above and below provide clear evidence for a
continuous phase transition at to a generic superconducting state. Based
on the vortex-glass scaling model, the resulting critical exponents and
are close to those frequently obtained on films by other means and
associated with an 'isotropic' vortex glass. The field effect on
can be related to the increase of the glass coherence length,
.Comment: 8 pages (5 figures upon request), revtex 3.0, APK.94.01.0
A method to determine the displacement velocity field in the apical region of the Arabidopsis root
In angiosperms, growth of the root apex is determined by the quiescent centre. All tissues of the root proper and the root cap are derived from initial cells that surround this zone. The diversity of cell lineages originated from these initials suggests an interesting variation of the displacement velocity within the root apex. However, little is known about this variation, especially in the most apical region including the root cap. This paper shows a method of determination of velocity field for this region taking the Arabidopsis root apex as example. Assuming the symplastic growth without a rotation around the root axis, the method combines mathematical modelling and two types of empirical data: the published velocity profile along the root axis above the quiescent centre, and dimensions of cell packet originated from the initials of epidermis and lateral root cap. The velocities, calculated for points of the axial section, vary in length and direction. Their length increases with distance from the quiescent centre, in the root cap at least twice slower than in the root proper, if points at similar distance from the quiescent centre are compared. The vector orientation depends on the position of a calculation point, the widest range of angular changes, reaching almost 90°, in the lateral root cap. It is demonstrated how the velocity field is related to both distribution of growth rates and growth-resulted deformation of the cell wall system. Also changes in the field due to cell pattern asymmetry and differences in slope of the velocity profile are modelled. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00425-012-1707-x) contains supplementary material, which is available to authorized users
Is there a vortex-glass transition in high-temperature superconductors?
We show that DC voltage versus current measurements of a YBCO micro-bridge in
a magnetic field can be collapsed onto scaling functions proposed by Fisher,
Fisher, and Huse, as is widely reported in the literature. We find, however,
that good data collapse is achieved for a wide range of critical exponents and
temperatures. These results strongly suggest that agreement with scaling alone
does not prove the existence of a phase transition. We propose a criterion to
determine if the data collapse is valid, and thus if a phase transition occurs.
To our knowledge, none of the data reported in the literature meet our
criterion.Comment: 4 pages, 4 figure
Vortex dynamics and states of artificially layered superconducting films with correlated defects
Linear resistances and -characteristics have been measured over a wide
range in the parameter space of the mixed phase of multilayered a-TaGe/Ge
films. Three films with varying interlayer coupling and correlated defects
oriented at an angle from the film normal were investigated.
Experimental data were analyzed within vortex glass models and a second order
phase transition from a resistive vortex liquid to a pinned glass phase.
Various vortex phases including changes from three to two dimensional behavior
depending on anisotropy have been identified. Careful analysis of
-characteristics in the glass phases revealed a distinctive and
-dependence of the glass exponent . The vortex dynamics in the
Bose-glass phase does not follow the predicted behavior for excitations of
vortex kinks or loops.Comment: 16 pages, 10 figures, 3 table
Contemporary midwifery practice: Art, science or both?
Current midwifery practice is regulated by the Nursing and Midwifery Council (NMC), whose primary role is to safeguard the public through setting standards for education and practice and regulating fitness to practise, conduct and performance through rules and codes (NMC, 2012; 2015a). Practice is informed by evidence-based guidelines developed and implemented by the National Institute for Health and Care Excellence based on hierarchies of evidence, with meta-analyses and systematic reviews being identified as the ‘gold standard’. This positivist epistemological approach as developed by Auguste Comte (1798–1857), with scientific evidence at the top of a knowledge hierarchy, fails to acknowledge the ‘art of midwifery’, where a constructivist paradigm of experiential, intuitive and tacit knowledge is used by reflective practitioners to provide high-quality care. As midwifery pre-registration education is now degree-level, is the essence of midwifery practice being ‘with woman’ providing holistic care under threat, as the drive for a systematic and analytical approach to decision-making gathers momentum
Genetic Control of Organ Shape and Tissue Polarity
A combination of experimental analysis and mathematical modelling shows how the genetic control of tissue polarity plays a fundamental role in the development and evolution of form