15,164 research outputs found
Metamagnetic Transition in NaCoO Single Crystals
We report the magnetization, specific heat and transport measurements of high
quality NaCoO single crystals in applied magnetic fields up to
14T. In high temperatures, the system is in a paramagnetic phase. It undergoes
a magnetic phase transition below about 20K. When the field is applied along
the c-axis, the measurement data of magnetization, specific heat and
magnetoresistance reveal a metamagnetic transition from an antiferromagnetic
state to a quasi-ferromagnetic state at about 8T in low temperatures. However,
no transition is observed in the magnetization measurements up to 14T when the
field is applied perpendicular to the c-axis. The low temperature magnetic
phase diagram of NaCoO is determined.Comment: 4 pages, 5 figure
Renormalization of tensor-network states
We have discussed the tensor-network representation of classical statistical
or interacting quantum lattice models, and given a comprehensive introduction
to the numerical methods we recently proposed for studying the tensor-network
states/models in two dimensions. A second renormalization scheme is introduced
to take into account the environment contribution in the calculation of the
partition function of classical tensor network models or the expectation values
of quantum tensor network states. It improves significantly the accuracy of the
coarse grained tensor renormalization group method. In the study of the quantum
tensor-network states, we point out that the renormalization effect of the
environment can be efficiently and accurately described by the bond vector.
This, combined with the imaginary time evolution of the wavefunction, provides
an accurate projection method to determine the tensor-network wavfunction. It
reduces significantly the truncation error and enable a tensor-network state
with a large bond dimension, which is difficult to be accessed by other
methods, to be accurately determined.Comment: 18 pages 23 figures, minor changes, references adde
Angular-dependent Magnetoresistance Oscillations in NaCoO Single Crystal
We report measurements of the c-axis angular-dependent magnetoresistance
(AMR) for a NaCoO single crystal, with a magnetic field of 10 T
rotating within Co-O planes. Below the metal-insulator transition temperature
induced by the charge ordering, the oscillation of the AMR is dominated by a
two-fold rotational symmetry. The amplitudes of the oscillation corresponding
to the four- and six-fold rotational symmetries are distinctive in low
temperatures, but they merge into the background simultaneously at about 25 K.
The six-fold oscillation originates naturally from the lattice symmetry. The
observation of the four-fold rotational symmetry is consistent with the picture
proposed by Choy, et al., that the Co lattice in the charge ordered state will
split into two orthorhombic sublattice with one occupied by Co ions and
the other by Co ions. We have also measured the c-axis AMR for
NaCoO and NaCoO single crystals, and found no
evidence for the existence of two- and four-fold symmetries.Comment: 4 pages, 6 figures. Submitted to PR
TIFA, an inflammatory signaling adaptor, is tumor suppressive for liver cancer.
TIFA (TNF receptor associated factor (TRAF)-interacting protein with a Forkhead-associated (FHA) domain), also called T2BP, was first identified using a yeast two-hybrid screening. TIFA contains a FHA domain, which directly binds phosphothreonine and phosphoserine, and a consensus TRAF6-binding motif. TIFA-mediated oligomerization and poly-ubiquitinylation of TRAF6 mediates signaling downstream of the Tumor necrosis factor alpha receptor 1 (TNFaR-I) and interleukin-1/Toll-like receptor 4 (TLR4) pathways. Examining TIFA expression in hepatocellular carcinoma (HCC) tissues microarrays, we noted marked decreases TIFA reactivity in tumor versus control samples. In agreement, we found that HCC cell lines show reduced TIFA expression levels versus normal liver controls. Reconstituting TIFA expression in HCC cell lines promoted two independent apoptosis signaling pathways: the induction of p53 and cell cycle arrest, and the activation of caspase-8 and caspase-3. In contrast, the expression of a non-oligomerizing mutant of TIFA impacted cells minimally, and suppression of TIFA expression protected cells from apoptosis. Mice bearing TIFA overexpression hepatocellular xenografts develop smaller tumors versus TIFA mutant tumors; terminal deoxynucleotidyl transferase dUTP nick end labeling staining demonstrates increased cell apoptosis, and decreased proliferation, reflecting cell cycle arrest. Interestingly, p53 has a greater role in decreased proliferation than cell death, as it appeared dispensable for TIFA-induced cell killing. The findings demonstrate a novel suppressive role of TIFA in HCC progression via promotion of cell death independent of p53
Density matrix renormalisation group for a quantum spin chain at non-zero temperature
We apply a recent adaptation of White's density matrix renormalisation group
(DMRG) method to a simple quantum spin model, the dimerised chain, in
order to assess the applicabilty of the DMRG to quantum systems at non-zero
temperature. We find that very reasonable results can be obtained for the
thermodynamic functions down to low temperatures using a very small basis set.
Low temperature results are found to be most accurate in the case when there is
a substantial energy gap.Comment: 6 pages, Standard Latex File + 7 PostScript figures available on
reques
Magnetar Driven Bubbles and the Origin of Collimated Outflows from GRBs
We model the interaction between the wind from a newly formed rapidly
rotating magnetar and the surrounding progenitor. In the first few seconds
after core collapse the magnetar inflates a bubble of plasma and magnetic
fields behind the supernova shock, which expands asymmetrically because of the
pinching effect of the toroidal magnetic field, as in PWNe, even if the host
star is spherically symmetric. The degree of asymmetry depends on the ratio of
the magnetic energy to the total energy in the bubble. We assume that the wind
by newly formed magnetars inflating these bubbles is more magnetized than for
PWNe. We show that for a magnetic to total power supplied by the central
magnetar the bubble expands relatively spherically while for values
greater than 0.3, most of the pressure in the bubble is exerted close to the
rotation axis, driving a collimated outflow out through the host star. This can
account for the collimation inferred from observations of long-duration
gamma-ray bursts (GRBs). Given that the wind magnetization increases in time,
we thus suggest that the magnetar-driven bubble initially expands relatively
spherically (enhancing the energy of the associated supernova) while at late
times it becomes progressivelymore collimated (producing the GRB). Similar
processes may operate in more modestly rotating neutron stars to produce
asymmetric supernovae and lower energy transients such as X-ray flashes.Comment: Proceeding of the conference "Astrophysics of Compact Objects", 1-7
July, Huangshan, Chin
- …