40 research outputs found
Presence of 5-hydroxyguaiacyl units as native lignin constituents in plants as seen by Py-GC/MS
Instituto de Recursos Naturales y AgrobiologĂa de Sevilla, CSIC, P.O. Box 1052, 41080-Seville, Spain
2Centro de Investigaciones BiolĂłgicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
E-mail address: [email protected] (J.C. del RĂo)The presence of 5-hydroxyguaiacyl moieties in the lignin from several plants has been assessed by Py-GC/MS. Different woody (eucalypt) and nonwoody (flax, hemp, kenaf, jute, sisal and abaca) angiosperms were selected for this study. The pyrolysis of whole fibers released lignin-derived products with p-hydroxyphenyl, guaiacyl and syringyl structures. Indeed, a series of compounds having a 5-hydroxyguaiacyl nuclei, including 3-methoxycatechol, 5-vinyl-3-methoxycatechol and 5-propenyl-3-methoxycatechol, were detected and identified in all samples, although in lower amounts than the normal guaiacyl and syringyl compounds. The analysis of the lignins isolated from the same plants also indicated the presence of 5-hydroxyguaiacyl moieties in the isolated lignins. These compounds are supposed to arise from the pyrolysis of 5-hydroxyguaiacyl moieties, which are supposed to be native constituents of lignin in plants forming benzodioxane substructures.This study has been supported by the Spanish Ministerio de Ciencia y TecnologĂa (MCyT) and FEDER funds (project AGL2005-01748) and the EU project BIORENEW (NMP2-CT-2006-026456). We thank CELESA S.A. (Tortosa, Spain) for providing the nonwoody plant samples, and ENCE for providing the eucalypt wood sample.Peer reviewe
Zinc Intake and Biochemical Markers of Bone Turnover in Type 1 Diabetes
OBJECTIVEâTo examine the relationship between Zn nutritive status and biochemical markers of bone turnover in type 1 diabetes
Deleterious Effects of Simulated Spaceflight on Bone and Microvasculature in Adult Mice
Long-term spaceflight leads to extensive changes in the musculoskeletal system attributable, in part, to unloading during microgravity exposure. Additionally, irradiation at doses similar to that of a solar flare or a round-trip sojourn to Mars may cause significant depletion of stem/progenitor cell pools throughout the body as well as inflammation associated with prompt skeletal-tissue degradation. Previously, we demonstrated that irradiation leads to rapid bone loss, which can be mitigated in the short term by injection of a potent antioxidant (-lipoic acid). Furthermore, simulated weightlessness in adult mice adversely affects skeletal responses to low linear energy transfer (LET) radiation (137Cs). Here, we hypothesized that simulated weightlessness exacerbates the adverse effects of simulated space radiation (including both protons and 56Fe ions) by adversely affecting skeletal structure and functions as well as associated vasculature. Furthermore, we hypothesized that an antioxidant cocktail, which has been shown to be protective in other tissues, mitigates space radiation induced bone loss
Effects of aging and exercise training on spinotrapezius muscle microvascular Po2 dynamics and vasomotor control
With advancing age, there is a reduction in exercise tolerance, resulting, in part, from a perturbed ability to match O2 delivery to uptake within skeletal muscle. In the spinotrapezius muscle (which is not recruited during incline treadmill running) of aged rats, we tested the hypotheses that exercise training will 1) improve the matching of O2 delivery to O2 uptake, evidenced through improved microvascular Po2 (PmO2), at rest and throughout the contractions transient; and 2) enhance endothelium-dependent vasodilation in first-order arterioles. Young (Y, âŒ6 mo) and aged (O, >24 mo) Fischer 344 rats were assigned to control sedentary (YSED; n = 16, and OSED; n = 15) or exercise-trained (YET; n = 14, and OET; n = 13) groups. Spinotrapezius blood flow (via radiolabeled microspheres) was measured at rest and during exercise. Phosphorescence quenching was used to quantify PmO2 in vivo at rest and across the rest-to-twitch contraction (1 Hz, 5 min) transition in the spinotrapezius muscle. In a follow-up study, vasomotor responses to endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside) stimuli were investigated in vitro. Blood flow to the spinotrapezius did not increase above resting values during exercise in either young or aged groups. Exercise training increased the precontraction baseline PmO2 (OET 37.5 ± 3.9 vs. OSED 24.7 ± 3.6 Torr, P < 0.05); the end-contracting PmO2 and the time-delay before PmO2 fell in the aged group but did not affect these values in the young. Exercise training improved maximal vasodilation in aged rats to acetylcholine (OET 62 ± 16 vs. OSED 27 ± 16%) and to sodium nitroprusside in both young and aged rats. Endurance training of aged rats enhances the PmO2 in a nonrecruited skeletal muscle and is associated with improved vascular smooth muscle function. These data support the notion that improvements in vascular function with exercise training are not isolated to the recruited muscle
Differential Effects of Aging and Exercise on Intra-Abdominal Adipose Arteriolar Function and Blood Flow Regulation
Adipose tissue (AT), which typically comprises an increased percentage of body mass with advancing age, receives a large proportion of resting cardiac output. During exercise, an old age-associated inability to increase vascular resistance within the intra-abdominal AT may compromise the ability of the cardiovascular system to redistribute blood flow to the active musculature, contributing to the decline in exercise capacity observed in this population. We tested the hypotheses that 1) there would be an elevated perfusion of AT during exercise with old age that was associated with diminished vasoconstrictor responses of adipose-resistance arteries, and 2) chronic exercise training would mitigate the age-associated alterations in AT blood flow and vascular function. Young (6 mo; n = 40) and old (24 mo; n = 28) male Fischer 344 rats were divided into young sedentary (YSed), old sedentary (OSed), young exercise trained (YET), or old exercise trained (OET) groups, where training consisted of 10-12 wk of treadmill exercise. In vivo blood flow at rest and during exercise and in vitro α-adrenergic and myogenic vasoconstrictor responses in resistance arteries from AT were measured in all groups. In response to exercise, there was a directionally opposite change in AT blood flow in the OSed group (âŒ150% increase) and YSed (âŒ55% decrease) vs. resting values. Both α-adrenergic and myogenic vasoconstriction were diminished in OSed vs. YSed AT-resistance arteries. Exercise training resulted in a similar AT hyperemic response between age groups during exercise (YET, 9.9 ± 0.5 ml·minâ1·100â1 g; OET, 8.1 ± 0.9 ml·minâ1·100â1 g) and was associated with enhanced myogenic and α-adrenergic vasoconstriction of AT-resistance arteries from the OET group relative to OSed. These results indicate that there is an inability to increase vascular resistance in AT during exercise with old age, due, in part, to a diminished vasoconstriction of AT arteries. Furthermore, the results indicate that exercise training can augment vasoconstriction of AT arteries and mitigate age-related alterations in the regulation of AT blood flow during exercise
Effects of Aging and Exercise Training on Skeletal Muscle Blood Flow and Resistance Artery Morphology
With old age, blood flow to the high-oxidative red skeletal muscle is reduced and blood flow to the low-oxidative white muscle is elevated during exercise. Changes in the number of feed arteries perforating the muscle are thought to contribute to this altered hyperemic response during exercise. We tested the hypothesis that exercise training would ameliorate age-related differences in blood flow during exercise and feed artery structure in skeletal muscle. Young (6â7 mo old, n = 36) and old (24 mo old, n = 25) male Fischer 344 rats were divided into young sedentary (Sed), old Sed, young exercise-trained (ET), and old ET groups, where training consisted of 10â12 wk of treadmill exercise. In Sed and ET rats, blood flow to the red and white portions of the gastrocnemius muscle (GastRed and GastWhite) and the number and luminal cross-sectional area (CSA) of all feed arteries perforating the muscle were measured at rest and during exercise. In the old ET group, blood flow was greater to GastRed (264 ± 13 and 195 ± 9 ml·minâ1·100 gâ1 in old ET and old Sed, respectively) and lower to GastWhite (78 ± 5 and 120 ± 6 ml·minâ1·100 gâ1 in old ET and old Sed, respectively) than in the old Sed group. There was no difference in the number of feed arteries between the old ET and old Sed group, although the CSA of feed arteries from old ET rats was larger. In young ET rats, there was an increase in the number of feed arteries perforating the muscle. Exercise training mitigated old age-associated differences in blood flow during exercise within gastrocnemius muscle. However, training-induced adaptations in resistance artery morphology differed between young (increase in feed artery number) and old (increase in artery CSA) animals. The altered blood flow pattern induced by exercise training with old age would improve the local matching of O2 delivery to consumption within the skeletal muscle