1,957 research outputs found

    Scintillation in the Circinus Galaxy water megamasers

    Full text link
    We present observations of the 22 GHz water vapor megamasers in the Circinus galaxy made with the Tidbinbilla 70m telescope. These observations confirm the rapid variability seen earlier by Greenhill et al (1997). We show that this rapid variability can be explained by interstellar scintillation, based on what is now known of the interstellar scintillation seen in a significant number of flat spectrum AGN. The observed variability cannot be fully described by a simple model of either weak or diffractive scintillation.Comment: 10 pages, 5 figures. AJ accepte

    Single-photon emitting diode in silicon carbide

    Full text link
    Electrically driven single-photon emitting devices have immediate applications in quantum cryptography, quantum computation and single-photon metrology. Mature device fabrication protocols and the recent observations of single defect systems with quantum functionalities make silicon carbide (SiC) an ideal material to build such devices. Here, we demonstrate the fabrication of bright single photon emitting diodes. The electrically driven emitters display fully polarized output, superior photon statistics (with a count rate of >>300 kHz), and stability in both continuous and pulsed modes, all at room temperature. The atomic origin of the single photon source is proposed. These results provide a foundation for the large scale integration of single photon sources into a broad range of applications, such as quantum cryptography or linear optics quantum computing.Comment: Main: 10 pages, 6 figures. Supplementary Information: 6 pages, 6 figure

    Low-Temperature Rapid Synthesis and Superconductivity of Fe-Based Oxypnictide Superconductors

    Full text link
    we were able to develop a novel method to synthesize Fe-based oxypnictide superconductors. By using LnAs and FeO as the starting materials and a ball-milling process prior to solid-state sintering, Tc as high as 50.7 K was obtained with the sample of Sm 0.85Nd0.15FeAsO0.85F0.15 prepared by sintering at temperatures as low as 1173 K for times as short as 20 min.Comment: 2 pages,2 figures, 1 tabl

    Community characterization of heterogeneous complex systems

    Full text link
    We introduce an analytical statistical method to characterize the communities detected in heterogeneous complex systems. By posing a suitable null hypothesis, our method makes use of the hypergeometric distribution to assess the probability that a given property is over-expressed in the elements of a community with respect to all the elements of the investigated set. We apply our method to two specific complex networks, namely a network of world movies and a network of physics preprints. The characterization of the elements and of the communities is done in terms of languages and countries for the movie network and of journals and subject categories for papers. We find that our method is able to characterize clearly the identified communities. Moreover our method works well both for large and for small communities.Comment: 8 pages, 1 figure and 2 table

    Spatial mapping of band bending in semiconductor devices using in-situ quantum sensors

    Get PDF
    Band bending is a central concept in solid-state physics that arises from local variations in charge distribution especially near semiconductor interfaces and surfaces. Its precision measurement is vital in a variety of contexts from the optimisation of field effect transistors to the engineering of qubit devices with enhanced stability and coherence. Existing methods are surface sensitive and are unable to probe band bending at depth from surface or bulk charges related to crystal defects. Here we propose an in-situ method for probing band bending in a semiconductor device by imaging an array of atomic-sized quantum sensing defects to report on the local electric field. We implement the concept using the nitrogen-vacancy centre in diamond, and map the electric field at different depths under various surface terminations. We then fabricate a two-terminal device based on the conductive two-dimensional hole gas formed at a hydrogen-terminated diamond surface, and observe an unexpected spatial modulation of the electric field attributed to a complex interplay between charge injection and photo-ionisation effects. Our method opens the way to three-dimensional mapping of band bending in diamond and other semiconductors hosting suitable quantum sensors, combined with simultaneous imaging of charge transport in complex operating devices.Comment: This is a pre-print of an article published in Nature Electronics. The final authenticated version is available online at https://dx.doi.org/10.1038/s41928-018-0130-

    The static quark-antiquark potential in QCD to three loops

    Get PDF
    The static potential between an infinitely heavy quark and antiquark is derived in the framework of perturbative QCD to three loops by performing a full calculation of the two-loop diagrams and using the renormalization group. The contribution of massless fermions is included.Comment: Latex, 11 pages, 3 figures included. The complete paper, including figures, is also available via anonymous ftp at ftp://ttpux2.physik.uni-karlsruhe.de/ , or via www at http://www-ttp.physik.uni-karlsruhe.de/cgi-bin/preprints/ . Revised version, essentially identical to the version published in Physical Review Letter

    Dopant effects on the photoluminescence of interstitial-related centers in ion implanted silicon

    No full text
    The dopant dependence of photoluminescence(PL) from interstitial-related centers formed by ion implantation and a subsequent anneal in the range 175–525 °C is presented. The evolution of these centers is strongly effected by interstitial-dopant clustering even in the low temperature regime. There is a significant decrease in the W line (1018.2 meV) PL intensity with increasing B concentration. However, an enhancement is also observed in a narrow fabrication window in samples implanted with either P or Ga. The annealtemperature at which the W line intensity is optimized is sensitive to the dopant concentration and type. Furthermore, dopants which are implanted but not activated prior to low temperature thermal processing are found to have a more detrimental effect on the resulting PL. Splitting of the X line (1039.8 meV) arising from implantation damage induced strain is also observed.This work is supported by a grant from the Australian Research Council. B.C.J. is partially supported by the Japan Society for the Promotion of Science (JSPS) (Grant-in-aid for Scientific Research, 22.00802)
    • …
    corecore