1,935 research outputs found

    Chirped-pulse interferometry with finite frequency correlations

    Full text link
    Chirped-pulse interferometry is a new interferometric technique encapsulating the advantages of the quantum Hong-Ou-Mandel interferometer without the drawbacks of using entangled photons. Both interferometers can exhibit even-order dispersion cancellation which allows high resolution optical delay measurements even in thick optical samples. In the present work, we show that finite frequency correlations in chirped-pulse interferometry and Hong-Ou-Mandel interferometry limit the degree of dispersion cancellation. Our results are important considerations in designing practical devices based on these technologies.Comment: 10 pages, 2 figure

    Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device

    Full text link
    We report the first demonstrations of both quadrature squeezed vacuum and photon number difference squeezing generated in an integrated nanophotonic device. Squeezed light is generated via strongly driven spontaneous four-wave mixing below threshold in silicon nitride microring resonators. The generated light is characterized with both homodyne detection and direct measurements of photon statistics using photon number-resolving transition edge sensors. We measure 1.0(1)1.0(1)~dB of broadband quadrature squeezing (4{\sim}4~dB inferred on-chip) and 1.5(3)1.5(3)~dB of photon number difference squeezing (7{\sim}7~dB inferred on-chip). Nearly-single temporal mode operation is achieved, with raw unheralded second-order correlations g(2)g^{(2)} as high as 1.87(1)1.87(1) measured (1.9{\sim}1.9~when corrected for noise). Multi-photon events of over 10 photons are directly detected with rates exceeding any previous quantum optical demonstration using integrated nanophotonics. These results will have an enabling impact on scaling continuous variable quantum technology.Comment: Significant improvements and updates to photon number squeezing results and discussions, including results on single temporal mode operatio

    Hsp27 regulates podocyte cytoskeletal changes in an in vitro model of podocyte process retraction

    Full text link
    Nephrotic syndrome (NS) is characterized by structural changes in the actin‐rich foot processes of glomerular podocytes. We previously identified high concentrations of the small heat shock protein hsp27 within podocytes as well as increased glomerular accumulation and phosphorylation of hsp27 in puromycin aminonucleoside (PAN) ‐induced experimental NS. Here we analyzed murine podocytes stably transfected with hsp27 sense, antisense, and vector control constructs using a newly developed in vitro PAN model system. Cell morphology and the microfilament structure of untreated sense and antisense transfectants were altered compared with controls. Vector cell survival, polymerized actin content, cell area, and hsp27 content increased after 1.25 μg/ml PAN treatment and decreased after 5.0 μg/ml treatment. In contrast, sense cells were unaffected by 1.25 μg/ml PAN treatment whereas antisense cells showed decreases or no changes in all parameters. Treatment of sense cells with 5.0 μ g/ml PAN resulted in increased cell survival and cell area whereas antisense cells underwent significant decreases in all parameters. Hsp27 provided dramatic protection against PAN‐induced microfilament disruption in sense > vector > antisense cells. We conclude that hsp27 is able to regulate both the morphological and actin cytoskeletal response of podocytes in an in vitro model of podocyte injury.—Smoyer, W. E., Ransom, R. F. Hsp27 regulates podocyte cytoskeletal changes in an in vitro model of podocyte process retraction. FASEB J. 16, 315–326 (2002)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154256/1/fsb2fj010681com.pd

    Experimental violation of Svetlichny's inequality

    Full text link
    It is well known that quantum mechanics is incompatible with local realistic theories. Svetlichny showed, through the development of a Bell-like inequality, that quantum mechanics is also incompatible with a restricted class of nonlocal realistic theories for three particles where any two-body nonlocal correlations are allowed [Phys. Rev. D 35, 3066 (1987)]. In the present work, we experimentally generate three-photon GHZ states to test Svetlichny's inequality. Our states are fully characterized by quantum state tomography using an overcomplete set of measurements and have a fidelity of (84+/-1)% with the target state. We measure a convincing, 3.6 std., violation of Svetlichny's inequality and rule out this class of restricted nonlocal realistic models.Comment: 10 pages, 3 figures, 1 tabl

    The XXL Survey X: K-band luminosity - weak-lensing mass relation for groups and clusters of galaxies

    Get PDF
    We present the K-band luminosity-halo mass relation, LK,500M500,WLL_{K,500}-M_{500,WL}, for a subsample of 20 of the 100 brightest clusters in the XXL Survey observed with WIRCam at the Canada-France-Hawaii Telescope (CFHT). For the first time, we have measured this relation via weak-lensing analysis down to M500,WL=3.5×1013MM_{500,WL} =3.5 \times 10^{13}\,M_\odot. This allows us to investigate whether the slope of the LKML_K-M relation is different for groups and clusters, as seen in other works. The clusters in our sample span a wide range in mass, M500,WL=0.3512.10×1014MM_{500,WL} =0.35-12.10 \times 10^{14}\,M_\odot, at 0<z<0.60<z<0.6. The K-band luminosity scales as log10(LK,500/1012L)βlog10(M500,WL/1014M)\log_{10}(L_{K,500}/10^{12}L_\odot) \propto \beta log_{10}(M_{500,WL}/10^{14}M_\odot) with β=0.850.27+0.35\beta = 0.85^{+0.35}_{-0.27} and an intrinsic scatter of σlnLKM=0.370.17+0.19\sigma_{lnL_K|M} =0.37^{+0.19}_{-0.17}. Combining our sample with some clusters in the Local Cluster Substructure Survey (LoCuSS) present in the literature, we obtain a slope of 1.050.14+0.161.05^{+0.16}_{-0.14} and an intrinsic scatter of 0.140.07+0.090.14^{+0.09}_{-0.07}. The flattening in the LKML_K-M seen in previous works is not seen here and might be a result of a bias in the mass measurement due to assumptions on the dynamical state of the systems. We also study the richness-mass relation and find that group-sized halos have more galaxies per unit halo mass than massive clusters. However, the brightest cluster galaxy (BCG) in low-mass systems contributes a greater fraction to the total cluster light than BCGs do in massive clusters; the luminosity gap between the two brightest galaxies is more prominent for group-sized halos. This result is a natural outcome of the hierarchical growth of structures, where massive galaxies form and gain mass within low-mass groups and are ultimately accreted into more massive clusters to become either part of the BCG or one of the brighter galaxies. [Abridged]Comment: A&A, in pres

    Separation between coherent and turbulent fluctuations. What can we learn from the Empirical Mode Decomposition?

    Full text link
    The performances of a new data processing technique, namely the Empirical Mode Decomposition, are evaluated on a fully developed turbulent velocity signal perturbed by a numerical forcing which mimics a long-period flapping. First, we introduce a "resemblance" criterion to discriminate between the polluted and the unpolluted modes extracted from the perturbed velocity signal by means of the Empirical Mode Decomposition algorithm. A rejection procedure, playing, somehow, the role of a high-pass filter, is then designed in order to infer the original velocity signal from the perturbed one. The quality of this recovering procedure is extensively evaluated in the case of a "mono-component" perturbation (sine wave) by varying both the amplitude and the frequency of the perturbation. An excellent agreement between the recovered and the reference velocity signals is found, even though some discrepancies are observed when the perturbation frequency overlaps the frequency range corresponding to the energy-containing eddies as emphasized by both the energy spectrum and the structure functions. Finally, our recovering procedure is successfully performed on a time-dependent perturbation (linear chirp) covering a broad range of frequencies.Comment: 23 pages, 13 figures, submitted to Experiments in Fluid
    corecore