3,062 research outputs found

    Statistics of the first passage time of Brownian motion conditioned by maximum value or area

    Get PDF
    We derive the moments of the first passage time for Brownian motion conditioned by either the maximum value or the area swept out by the motion. These quantities are the natural counterparts to the moments of the maximum value and area of Brownian excursions of fixed duration, which we also derive for completeness within the same mathematical framework. Various applications are indicated.Comment: 29 pages, 4 figures include

    The first-passage area for drifted Brownian motion and the moments of the Airy distribution

    Get PDF
    An exact expression for the distribution of the area swept out by a drifted Brownian motion till its first-passage time is derived. A study of the asymptotic behaviour confirms earlier conjectures and clarifies their range of validity. The analysis also leads to a simple closed-form solution for the moments of the Airy distribution.Comment: 13 page

    Distribution of the time at which the deviation of a Brownian motion is maximum before its first-passage time

    Full text link
    We calculate analytically the probability density P(tm)P(t_m) of the time tmt_m at which a continuous-time Brownian motion (with and without drift) attains its maximum before passing through the origin for the first time. We also compute the joint probability density P(M,tm)P(M,t_m) of the maximum MM and tmt_m. In the driftless case, we find that P(tm)P(t_m) has power-law tails: P(tm)∼tm−3/2P(t_m)\sim t_m^{-3/2} for large tmt_m and P(tm)∼tm−1/2P(t_m)\sim t_m^{-1/2} for small tmt_m. In presence of a drift towards the origin, P(tm)P(t_m) decays exponentially for large tmt_m. The results from numerical simulations are in excellent agreement with our analytical predictions.Comment: 13 pages, 5 figures. Published in Journal of Statistical Mechanics: Theory and Experiment (J. Stat. Mech. (2007) P10008, doi:10.1088/1742-5468/2007/10/P10008

    Area distribution and the average shape of a L\'evy bridge

    Full text link
    We consider a one dimensional L\'evy bridge x_B of length n and index 0 < \alpha < 2, i.e. a L\'evy random walk constrained to start and end at the origin after n time steps, x_B(0) = x_B(n)=0. We compute the distribution P_B(A,n) of the area A = \sum_{m=1}^n x_B(m) under such a L\'evy bridge and show that, for large n, it has the scaling form P_B(A,n) \sim n^{-1-1/\alpha} F_\alpha(A/n^{1+1/\alpha}), with the asymptotic behavior F_\alpha(Y) \sim Y^{-2(1+\alpha)} for large Y. For \alpha=1, we obtain an explicit expression of F_1(Y) in terms of elementary functions. We also compute the average profile < \tilde x_B (m) > at time m of a L\'evy bridge with fixed area A. For large n and large m and A, one finds the scaling form = n^{1/\alpha} H_\alpha({m}/{n},{A}/{n^{1+1/\alpha}}), where at variance with Brownian bridge, H_\alpha(X,Y) is a non trivial function of the rescaled time m/n and rescaled area Y = A/n^{1+1/\alpha}. Our analytical results are verified by numerical simulations.Comment: 21 pages, 4 Figure

    On the Inelastic Collapse of a Ball Bouncing on a Randomly Vibrating Platform

    Get PDF
    We study analytically the dynamics of a ball bouncing inelastically on a randomly vibrating platform, as a simple toy model of inelastic collapse. Of principal interest are the distributions of the number of flights n_f till the collapse and the total time \tau_c elapsed before the collapse. In the strictly elastic case, both distributions have power law tails characterised by exponents which are universal, i.e., independent of the details of the platform noise distribution. In the inelastic case, both distributions have exponential tails: P(n_f) ~ exp[-\theta_1 n_f] and P(\tau_c) ~ exp[-\theta_2 \tau_c]. The decay exponents \theta_1 and \theta_2 depend continuously on the coefficient of restitution and are nonuniversal; however as one approches the elastic limit, they vanish in a universal manner that we compute exactly. An explicit expression for \theta_1 is provided for a particular case of the platform noise distribution.Comment: 32 page

    Precise Asymptotics for a Random Walker's Maximum

    Full text link
    We consider a discrete time random walk in one dimension. At each time step the walker jumps by a random distance, independent from step to step, drawn from an arbitrary symmetric density function. We show that the expected positive maximum E[M_n] of the walk up to n steps behaves asymptotically for large n as, E[M_n]/\sigma=\sqrt{2n/\pi}+ \gamma +O(n^{-1/2}), where \sigma^2 is the variance of the step lengths. While the leading \sqrt{n} behavior is universal and easy to derive, the leading correction term turns out to be a nontrivial constant \gamma. For the special case of uniform distribution over [-1,1], Coffmann et. al. recently computed \gamma=-0.516068...by exactly enumerating a lengthy double series. Here we present a closed exact formula for \gamma valid for arbitrary symmetric distributions. We also demonstrate how \gamma appears in the thermodynamic limit as the leading behavior of the difference variable E[M_n]-E[|x_n|] where x_n is the position of the walker after n steps. An application of these results to the equilibrium thermodynamics of a Rouse polymer chain is pointed out. We also generalize our results to L\'evy walks.Comment: new references added, typos corrected, published versio

    On the time to reach maximum for a variety of constrained Brownian motions

    Get PDF
    Published: J. Phys. A: Math. Theor. 41, 365005 (2008).International audienceWe derive P(M,t_m), the joint probability density of the maximum M and the time t_m at which this maximum is achieved for a class of constrained Brownian motions. In particular, we provide explicit results for excursions, meanders and reflected bridges associated with Brownian motion. By subsequently integrating over M, the marginal density P(t_m) is obtained in each case in the form of a doubly infinite series. For the excursion and meander, we analyse the moments and asymptotic limits of P(t_m) in some detail and show that the theoretical results are in excellent accord with numerical simulations. Our primary method of derivation is based on a path integral technique; however, an alternative approach is also outlined which is founded on certain "agreement formulae" that are encountered more generally in probabilistic studies of Brownian motion processes

    Maximum relative height of one-dimensional interfaces : from Rayleigh to Airy distribution

    Full text link
    We introduce an alternative definition of the relative height h^\kappa(x) of a one-dimensional fluctuating interface indexed by a continuously varying real paramater 0 \leq \kappa \leq 1. It interpolates between the height relative to the initial value (i.e. in x=0) when \kappa = 0 and the height relative to the spatially averaged height for \kappa = 1. We compute exactly the distribution P^\kappa(h_m,L) of the maximum h_m of these relative heights for systems of finite size L and periodic boundary conditions. One finds that it takes the scaling form P^\kappa(h_m,L) = L^{-1/2} f^\kappa (h_m L^{-1/2}) where the scaling function f^\kappa(x) interpolates between the Rayleigh distribution for \kappa=0 and the Airy distribution for \kappa=1, the latter being the probability distribution of the area under a Brownian excursion over the unit interval. For arbitrary \kappa, one finds that it is related to, albeit different from, the distribution of the area restricted to the interval [0, \kappa] under a Brownian excursion over the unit interval.Comment: 25 pages, 4 figure
    • …
    corecore