53,044 research outputs found
High-resolution Earth-based lunar radar studies: Applications to lunar resource assessment
The lunar regolith will most likely be a primary raw material for lunar base construction and resource extraction. High-resolution radar observations of the Moon provide maps of radar backscatter that have intensity variations generally controlled by the local slope, material, and structural properties of the regolith. The properties that can be measured by the radar system include the dielectric constant, density, loss tangent, and wavelength scale roughness. The radar systems currently in operation at several astronomical observatories provide the ability to image the lunar surface at spatial resolutions approaching 30 m at 3.8 cm and 12.6 cm wavelengths and approximately 500 m at 70 cm wavelength. The radar signal penetrates the lunar regolith to a depth of 10-20 wavelengths so the measured backscatter contains contributions from the vacuum-regolith interface and from wavelength-scale heterogeneities in the electrical properties of the subsurface material. The three wavelengths, which are sensitive to different scale structures and scattering volumes, provide complementary information on the regolith properties. Aims of the previous and future observations include (1) analysis of the scattering properties associated with fresh impact craters, impact crater rays, and mantled deposits; (2) analysis of high-incidence-angle observations of the lunar mare to investigate measurement of the regolith dielectric constant and hence porosity; (3) investigation of interferometric techniques using two time-delayed observations of the same site, observations that require a difference in viewing geometry less than 0.05 deg and, hence, fortuitous alignment of the Earth-Moon system when visible from Arecibo Observatory
Optimal land cover mapping and change analysis in northeastern oregon using landsat imagery.
Abstract The necessity for the development of repeatable, efficient, and accurate monitoring of land cover change is paramount to successful management of our planet’s natural resources. This study evaluated a number of remote sensing methods for classifying land cover and land cover change throughout a two-county area in northeastern Oregon (1986 to 2011). In the past three decades, this region has seen significant changes in forest management that have affected land use and land cover. This study employed an accuracy assessment-based empirical approach to test the optimality of a number of advanced digital image processing techniques that have recently emerged in the field of remote sensing. The accuracies are assessed using traditional error matrices, calculated using reference data obtained in the field. We found that, for single-time land cover classification, Bayes pixel-based classification using samples created with scale and shape segmentation parameters of 8 and 0.3, respectively, resulted in the highest overall accuracy. For land cover change detection, using Landsat-5 TM band 7 with a change threshold of 1.75 standard deviations resulted in the highest accuracy for forest harvesting and regeneration mapping
Historic Indian Groups of the Choke Canyon Reservoir and Surrounding Area, Southern Texas
This volume is the first in a series to be published on the archaeology, history and ethnohistory of the Choke Canyon Reservoir area in southern Texas. Intensive, coordinated cultural resource investigations have been underway in the reservoir basin since 1977, under the terms of Contract No. 7-07-50-V0897 (Nueces River Project), between the Center for Archaeological Research, The University of Texas at San Antonio and the Water and Power. Resources Service (formerly the Bureau of Reclamation) of the United States Department of the Interior
Frontier exploration and the North Atlantic Igneous Province : new insights from a 2.6 km offshore volcanic sequence in the NE Faroe–Shetland Basin
Acknowledgements and Funding This work was funded by Chevron. The authors would like to acknowledge the Chevron West of Shetlands team along with the Joint Venture partners OMV, Faroe Petroleum and Indemitsu for access to data along with permission to publish this study. PGS is thanked for access to the Corona Ridge Regional Geostreamer (CRRG) data and permission to publish the seismic line. The paper was improved thanks to insightful reviews by S. M. Jones and A. Saunders, which substantially improved an earlier draft. J. Still and F. Thompson gave invaluable technical support at the University of Aberdeen, and K. Wall helped with real-time cuttings analysis.Peer reviewedPostprin
Microwave scattering and emission properties of large impact craters on the surface of Venus
Many of the impact craters on Venus imaged by the Magellan synthetic aperture radar (SAR) have interior floors with oblique incidence angle backscatter cross sections 2 to 16 times (3 dB to 12 dB) greater than the average scattering properties of the planet's surface. Such high backscatter cross sections are indicative of a high degree of wavelength-scale surface roughness and/or a high intrinsic reflectivity of the material forming the crater floors. Fifty-three of these (radar) bright floored craters are associated with 93 percent of the parabolic-shaped radar-dark features found in the Magellan SAR and emissivity data, features that are thought to be among the youngest on the surface of Venus. It was suggested by Campbell et al. that either the bright floors of the parabolic feature parent craters are indicative of a young impact and the floor properties are modified with time to a lower backscatter cross section or that they result from some property of the surface or subsurface material at the point of impact or from the properties of the impacting object. As a continuation of earlier work we have examined all craters with diameters greater than 30 km (except 6 that were outside the available data) so both the backscatter cross section and emissivity of the crater floors could be estimated from the Magellan data
Quantum and Fisher Information from the Husimi and Related Distributions
The two principal/immediate influences -- which we seek to interrelate here
-- upon the undertaking of this study are papers of Zyczkowski and
Slomczy\'nski (J. Phys. A 34, 6689 [2001]) and of Petz and Sudar (J. Math.
Phys. 37, 2262 [1996]). In the former work, a metric (the Monge one,
specifically) over generalized Husimi distributions was employed to define a
distance between two arbitrary density matrices. In the Petz-Sudar work
(completing a program of Chentsov), the quantum analogue of the (classically
unique) Fisher information (montone) metric of a probability simplex was
extended to define an uncountable infinitude of Riemannian (also monotone)
metrics on the set of positive definite density matrices. We pose here the
questions of what is the specific/unique Fisher information metric for the
(classically-defined) Husimi distributions and how does it relate to the
infinitude of (quantum) metrics over the density matrices of Petz and Sudar? We
find a highly proximate (small relative entropy) relationship between the
probability distribution (the quantum Jeffreys' prior) that yields quantum
universal data compression, and that which (following Clarke and Barron) gives
its classical counterpart. We also investigate the Fisher information metrics
corresponding to the escort Husimi, positive-P and certain Gaussian probability
distributions, as well as, in some sense, the discrete Wigner
pseudoprobability. The comparative noninformativity of prior probability
distributions -- recently studied by Srednicki (Phys. Rev. A 71, 052107 [2005])
-- formed by normalizing the volume elements of the various information
metrics, is also discussed in our context.Comment: 27 pages, 10 figures, slight revisions, to appear in J. Math. Phy
Artificial neural network prediction of weld distortion rectification using a travelling induction coil
An experimental investigation has been carried out to determine the applicability of an induction heating process with a travelling induction coil for the rectification of angular welding distortion. The results obtained from experimentation have been used to create artificial neural network models with the ability to predict the welding induced distortion and the distortion rectification achieved using a travelling induction coil. The experimental results have shown the ability to reduce the angular distortion for 8 mm and 10 mm thick DH36 steel plate and effectively eliminate the distortion on 6 mm thick plate. Results for 6 mm plate also show the existence of a critical induction coil travel speed at which maximum corrective bending occurs. Artificial neural networks have demonstrated the ability to predict the final distortion of the plate after both welding and induction heating. The models have also been used as a tool to determine the optimum speed to minimise the resulting distortion of steel plate after being subjected to both welding and induction heating processes
- …