2,857 research outputs found
Cultural Knowledge: The Unrecognized Responsibility of Art Education
Art educators are a subgroup within the larger culture whose role it is to communicate information and skills in the visual arts for guiding individuals to find greater personal satisfaction in the visual arts, to gain knowledge of the visual arts as areas of specialized interest, and to become aware of the contribution the visual arts make to their cultural heritage. This paper proposes that the kinds of information that future art teachers gain while training in their specialized area fails to prepare them adequately for their role. A parallelism discovered in the work of cultural geographer, Yi-Fu Tuan (1974) and the recent work of cognitive psychologist, David Feldman (1980, 1984) suggests that different forces or domains of knowledge interact in ways that guide and direct the formation of ideas. In the following paper, the work of Tuan and Feldman are used as a basis for a greater understanding of the contradictory elements in the education and role expectancy of the art educator
Simple fecal flotation is a superior alternative to guadruple Kato Katz smear examination for the detection of hookworm eggs in human stool
Microscopy-based identification of eggs in stool offers simple, reliable and economical options for assessing the prevalence and intensity of hookworm infections, and for monitoring the success of helminth control programs. This study was conducted to evaluate and compare the diagnostic parameters of the Kato-Katz (KK) and simple sodium nitrate flotation technique (SNF) in terms of detection and quantification of hookworm eggs, with PCR as an additional reference test in stool, collected as part of a baseline cross-sectional study in Cambodia.; Fecal samples collected from 205 people in Dong village, Rovieng district, Preah Vihear province, Cambodia were subjected to KK, SNF and PCR for the detection (and in case of microscopy-based methods, quantification) of hookworm eggs in stool. The prevalence of hookworm detected using a combination of three techniques (gold standard) was 61.0%. PCR displayed a highest sensitivity for hookworm detection (92.0%) followed by SNF (44.0%) and quadruple KK smears (36.0%) compared to the gold standard. The overall eggs per gram feces from SNF tended to be higher than for quadruple KK and the SNF proved superior for detecting low egg burdens.; As a reference, PCR demonstrated the higher sensitivity compared to SNF and the quadruple KK method for detection of hookworm in human stool. For microscopic-based quantification, a single SNF proved superior to the quadruple KK for the detection of hookworm eggs in stool, in particular for low egg burdens. In addition, the SNF is cost-effective and easily accessible in resource poor countries
"Wenn ich alle Pillen genommen habe, bin ich satt" : Multimorbidität und Multimedikation: Herausforderungen in einer alternden Gesellschaft
Mit den Krankheiten häuft sich im Alter auch die Zahl der einzunehmenden Medikamente. Das bringt viele Probleme mit sich. Das Institut für Allgemeinmedizin der Goethe-Universität untersucht in enger Kooperation mit der Universität Maastricht die Folgen der Multimedikation und entwickelt gemeinsam mit Hausärzten Strategien, um unerwünschte Wirkungen zu vermeiden
Cytochrome cM decreases photosynthesis under photomixotrophy in Synechocystis sp. PCC 6803
Photomixotrophy is a metabolic state that enables photosynthetic microorganisms to simultaneously perform photosynthesis and metabolism of imported organic carbon substrates. This process is complicated in cyanobacteria, since many, including Synechocystis sp. PCC 6803, conduct photosynthesis and respiration in an interlinked thylakoid membrane electron transport chain. Under photomixotrophy, the cell must therefore tightly regulate electron fluxes from photosynthetic and respiratory complexes. In this study, we demonstrate, via characterization of photosynthetic apparatus and the proteome, that photomixotrophic growth results in a gradual inhibition of QA- reoxidation in wild-type Synechocystis, which largely decreases photosynthesis over 3 d of growth. This process is circumvented by deleting the gene encoding cytochrome cM (CytM), a cryptic c-type heme protein widespread in cyanobacteria. The ΔCytM strain maintained active photosynthesis over the 3-d period, demonstrated by high photosynthetic O2 and CO2 fluxes and effective yields of PSI and PSII. Overall, this resulted in a higher growth rate compared to that of the wild type, which was maintained by accumulation of proteins involved in phosphate and metal uptake, and cofactor biosynthetic enzymes. While the exact role of CytM has not been determined, a mutant deficient in the thylakoid-localized respiratory terminal oxidases and CytM (ΔCox/Cyd/CytM) displayed a phenotype similar to that of ΔCytM under photomixotrophy. This, in combination with other physiological data, and in contrast to a previous hypothesis, suggests that CytM does not transfer electrons to these complexes. In summary, our data suggest that CytM may have a regulatory role in photomixotrophy by modulating the photosynthetic capacity of cells
A Conceptual Evaluation of Sustainable Variable-Rate Agricultural Residue Removal
Agricultural residues have near-term potential as a feedstock for bioenergy production, but their removal must be managed carefully to maintain soil health and productivity. Recent studies have shown that subfield scale variability in soil properties (e.g., slope, texture, and organic matter content) that affect grain yield significantly affect the amount of residue that can be sustainably removed from different areas within a single field. This modeling study examines the concept of variable-rate residue removal equipment that would be capable of on-the-fly residue removal rate adjustments ranging from 0 to 80%. Thirteen residue removal rates (0% and 25–80% in 5% increments) were simulated using a subfield scale integrated modeling framework that evaluates residue removal sustainability considering wind erosion, water erosion, and soil carbon constraints. Three Iowa fields with diverse soil, slope, and grain yield characteristics were examined and showed sustainable, variable-rate agricultural residue removal that averaged 2.35, 7.69, and 5.62 Mg ha−1, respectively. In contrast, the projected sustainable removal rates using rake and bale removal for the entire field averaged 0.0, 6.40, and 5.06 Mg ha−1, respectively. The modeling procedure also projected that variable-rate residue harvest would result in 100% of the land area in all three fields being managed in a sustainable manner, whereas Field 1 could not be sustainably managed using rake and bale removal, and only 83 and 62% of the land area in Fields 2 and 3 would be managed sustainably using a rake and bale operation for the entire field. In addition, it was found that residue removal adjustments of 40 to 65% are sufficient to collect 90% of the sustainably available agricultural residue
Particle number conservation in quantum many-body simulations with matrix product operators
Incorporating conservation laws explicitly into matrix product states (MPS)
has proven to make numerical simulations of quantum many-body systems much less
resources consuming. We will discuss here, to what extent this concept can be
used in simulation where the dynamically evolving entities are matrix product
operators (MPO). Quite counter-intuitively the expectation of gaining in speed
by sacrificing information about all but a single symmetry sector is not in all
cases fulfilled. It turns out that in this case often the entanglement imposed
by the global constraint of fixed particle number is the limiting factor.Comment: minor changes, 18 pages, 5 figure
An Integrated Modeling and Data Management Strategy for Cellulosic Biomass Production Decisions
Emerging cellulosic bioenergy markets can provide land managers with additional options for crop production decisions. For example, integrating dedicated bioenergy crops such as perennial grasses and short rotation woody species within the agricultural landscape can have positive impacts on several environmental processes including increased soil organic matter in degraded soils, reduced sediment and nutrient loading in watersheds, and lower green house gas fluxes. Implementing this type of diverse bioenergy production system to maximize the potential environmental benefits requires a detailed understanding of the many interwoven aspects of environmental landscapes. This paper presents a dynamic framework-based integrated modeling and data management strategy that can design sustainable bioenergy cropping systems within the existing row crop production landscape of the Midwestern U.S. Critical environmental processes— including soil erosion from wind and water, and soil organic matter changes—are quantified by this integrated model to determine sustainable removal rates of agricultural residues for bioenergy production at the sub-field scale. Seven land management options for a 59 ha Iowa field are examined using the integrated model. These include a baseline case of sustainable residue removal and various incorporations of rye cover cropping and switchgrass use in marginal land. Relative to the baseline metrics, the adoption of rye cover crops with sustainable residue removal increases the total biomass sustainably available for biofuel production by 289% and reduces soil loss by 42%. Combining rye cover crops while displacing less productive and at-risk areas of the field with switchgrass increases the sustainable biomass available by 436% and decreases soil loss by 64%
Housing prices and multiple employment nodes: is the relationship nonmonotonic?
Standard urban economic theory predicts that house prices will decline with distance from the central business district. Empirical results have been equivocal, however. Disjoints between theory and empirics may be due to a nonmonotonic relationship between house prices and access to employment arising from the negative externalities associated with proximity to multiple centres of employment. Based on data from Glasgow (Scotland), we use gravity-based measures of accessibility estimated using a flexible functional form that allows for nonmonotonicity. The results are thoroughly tested using recent advances in spatial econometrics. We find compelling evidence of a nonmonotonic effect in the accessibility measure and discuss the implications for planning and housing policy
Integrated ag landscapes for profit and risk management
The emerging cellulosic bioenergy and bioproduct industries can provide several agronomic opportunities. New biomass markets give land managers additional choices that can create revenue, mitigate operational risks, and proactively manage soil quality
- …