420 research outputs found
COMPOSITION AND OCCURRENCE OF THE GRANDISPORA MACULOSA ZONAL ASSEMBLAGE (MISSISSIPPIAN) IN THE SUBSURFACE OF THE CARNARVON BASIN AND THE COOLCALALAYA SUB-BASIN OF WESTERN AUSTRALIA, AND ITS GONDWANAN DISTRIBUTION
The Grandispora maculosa miospore assemblage – initially described in 1968 from Middle-Late Mississippian strata of New South Wales (eastern Australia) – is well represented in samples examined herein from 10 Western Australian subsurface sections located in the northern Perth Basin (Coolcalalaya Sub-basin) and, to its immediate north, in several sub-basins of the southern and northern sectors of the Carnarvon Basin. Of particular stratigraphic-correlative importance is the presence of the eponymous G. maculosa together with, inter alia, Reticulatisporites magnidictyus, Verrucosisporites quasigobbettii, V. gregatus, Apiculiretusispora tersa, Raistrickia accinta, R. radiosa, Foveosporites pellucidus, and Cordylosporites asperidictyus. Four species are newly described herein: Apiculatasporites spiculatus, Dibolisporites sejunctus, Raistrickia corymbiata, and Vallatisporites valentulus. Published accounts from elsewhere in Gondwana collectively signify the widespread dissemination of the G. maculosa palynoflora, particularly through northern and western regions of the supercontinent, thus affording an effective means of intra-Gondwanan stratal correlation. Limited absolute dating and stratigraphic-successional considerations across Gondwana indicate that the age of the G. maculosa Assemblage can be bracketed within the middle Visean-early Serpukhovian of the Middle-Late Mississippian. This age is supported by the complete absence of bilaterally symmetrical, non-striate, saccate pollen grains, produced by walchian conifers, which were introduced globally (including in Australia) and near-synchronously late in the Serpukhovian. Cryptogamic land plants (ferns, articulates, lycophytes) are the inferred source of the palynoflora
High-Redshift Radio Galaxies as a Cosmological Tool: Exploration of a Key Assumption and Comparison with Supernova Results
There are many different approaches to using observations to constrain or
determine the global cosmological parameters that describe our universe.
Methods that rely upon a determination of the coordinate distance to
high-redshift sources are particularly useful because they do not involve
assumptions about the clustering properties of matter, or the evolution of this
clustering.
Two of the methods currently being used to determine the coordinate distance
to high-redshift sources are the radio galaxy method and the supernova method.
These methods are similar in their dependence on the coordinate distance. Here,
the radio galaxy method is briefly described and results are presented. One of
the underlying assumptions of the method is explored. In addition, the method
is compared and contrasted to the supernova method. The constraints imposed on
global cosmological parameters by radio galaxies are consistent with those
imposed by supernovae.
For a universe that is spatially flat with mean mass density in
non-relativistic matter and mean mass density 1- in quintessence,
radio galaxies alone indicate at 84 % confidence that the expansion of the
universe is accelerating at the current epoch. And, independent of whether or
not the universe is spatially flat, radio galaxies alone indicate at 95 %
confidence that must be less than 0.6 at the current epoch.Comment: 8 page
Early Permian Zircon Ages from the \u3cem\u3eP. confluens\u3c/em\u3e and \u3cem\u3eP. pseudoreticulata\u3c/em\u3e Spore-Pollen Zones in the Southern Bonaparte and Canning Basins, Northwestern Australia
The Pseudoreticulatispora confluens–P. pseudoreticulata spore-pollen zonal datum typically coincides with the end of widespread Permian glacial deposits in Western Australia. Although previously attributed to the mid-Sakmarian, chemical abrasion isotope dilution thermal ionisation mass spectrometry (TIMS) dating of zircons from volcanic tuffs in the Ditji Formation of the Bonaparte Basin and the Grant Group in the Canning Basin point to an Asselian age of about 295.25 Ma for this datum. All dated zircons from the Ditji Formation came from petroleum well cuttings but the accompanying palynology was mostly from sidewall cores; however, all Grant Group samples were from conventional core. TIMS dates from the Ditji Formation range in age from 295.2 to 292.7 Ma whereas the only productive tuff from the Grant Group yielded a 296.26 Ma date. By comparison, there are no zircon dates to constrain the onset of glacial deposition in Australia. The Bonaparte Basin ages overlap with those for the Edie Tuff (296.1–294.5 Ma) in Queensland’s Galilee Basin, approximately 2000 km to the southeast, which also lies close to the base of the P. pseudoreticulata Zone. To date the only fossil group within the P. confluens Zone in Western Australia to provide independent age control, albeit loosely, are goniatites from the northern Perth Basin (Uraloceras irwinense and Juresanites jacksoni) that have consistently been attributed to the Sakmarian; these require a reassessment of their affinity with Russian faunas and therefore to global stratotypes. The position of the Carboniferous–Permian boundary is elusive in Australia and will remain so until additional volcanic tuffs containing young datable zircons are found; however, spore-pollen and zircon dates from Namibia place this boundary within the P. confluens Zone
The low-field conductivity of zeolite-encapsulated molecular wires
The first measurements of an upper bound for the low-field conductivity of a molecular wire are
presented here. We were able to encapsulate polypyrrole with chain lengths more than 10 monomers
within the channels of different zeolites. Although the chains are fully oxidized by intrazeolite Fe3 +
ions, and should conduct (when included in a bulk polymer), they do not exhibit, in the zeolite,
significant ac conductivity up to 1 GHz. This suggests that other strategies than low field conductivity
are needed to inject charges and transmit information through isolated molecular wires
Structure of a Bathtub Vortex : Importance of the Bottom Boundary Layer
A bathtub vortex in a cylindrical tank rotating at a constant angular velocity [omega] is studied by meansof a laboratory experiment, a numerical experiment and a boundary layer theory. The laboratory and numerical experiments show that two regimes of vortices in the steady-state can occur depending on [omega] and the volume flux Q through the drain hole: when Q is large and [omega] is small, a potential vortex is formed in which angular momentum outside the vortex core is constant in the non-rotating frame. However, when Q is small or [omega] is large, a vortex is generated in which the angular momentum decreases with decreasing radius. Boundary layertheory shows that the vortex regimes strongly depend on the theoretical radial volume flux through the bottomboundary layer under a potential vortex : when the ratio of Q to the theoretical boundary-layer radial volume flux Qb (scaled by 2π R2([omega] ν)12 ) at the outer rim of the vortex core is larger than a critical value (of order 1), the radial flow in the interior exists at all radiiand Regime I is realized, where R is the inner radius of the tank and ν the kinematicviscosity.When the ratio is less than the critical value, the radial flow in the interior nearlyvanishes inside a critical radius and almost all of the radial volume flux occurs only in the boundary layer,resulting in Regime II in which the angular momentum is not constant with radius. This criterion is found to explain the results of the laboratory and numerical experiments very well
3-D Perturbations in Conformal Turbulence
The effects of three-dimensional perturbations in two-dimensional turbulence
are investigated, through a conformal field theory approach. We compute scaling
exponents for the energy spectra of enstrophy and energy cascades, in a strong
coupling limit, and compare them to the values found in recent experiments. The
extension of unperturbed conformal turbulence to the present situation is
performed by means of a simple physical picture in which the existence of small
scale random forces is closely related to deviations of the exact
two-dimensional fluid motion.Comment: Discussion of intermittency improved. Figure include
Progress towards the eradication of Tsetse from the Loos islands, Guinea
Background: The tsetse fly Glossina palpalis gambiensis is the main vector of sleeping sickness (Human African Trypanosomiasis - HAT) in West Africa, in particular in littoral Guinea where this disease is currently very active. The Loos islands constitute a small archipelago some 5 km from mainland Guinea, where G. p. gambiensis is well known as a nuisance and potential disease vector by inhabitants of the three main islands, Fotoba, Room, and Kassa. The National Control Program against HAT of Guinea has decided to eradicate tsetse in Loos islands in order to sustainably protect humans and economic activities. After baseline data collection, tsetse control began on the islands in 2006. On each of the three islands a specific combination of control methods was implemented according to the entomological situation found. Results: Starting densities before control operations were 10, 3 and 1 tsetse/trap/day in Kassa, Room and Fotoba respectively, but by July 2010, tsetse were no longer caught in any of the sentinel traps used for monitoring. The reduction rate was faster where several control methods were implemented as a combination (impregnated traps and targets ITT, selective groundspraying, epicutaneous insecticide treatment of pigs, and impregnated fences around pig pens), whereas it was slower when ITT were used as the only control method. Conclusions: This 100% suppression is a promising step in the eradication process, but G. p. gambiensis may still occur at very low, undetectable, densities on the archipelago. Next step will consist in assessing a 0.05 probability of tsetse absence to ascertain a provisional eradication status. Throughout these operations, a key factor has been the involvement of local teams and local communities without whom such results would be impossible to obtain. Work will continue thanks to the partners involved until total eradication of the tsetse on Loos islands can be declared
Active Flow Control on Vertical Tail Models
Active flow control (AFC) subscale experiments were conducted at the Lucas Wind Tunnel of the California Institute of Technology. Tests were performed on a generic vertical tail model at low speeds. Fluidic oscillators were used at the trailing edge of the main element (vertical stabilizer) to redirect the flow over the rudder and delay or prevent flow separation. Side force increases in excess of 50% were achieved with a 2% momentum coefficient (C_μ) input. The results indicated that a collective C_μ of about 1% could increase the side force by 30–50%. This result is achieved by reducing the spanwise flow on the swept back wings that contributes to early flow separation near their tips. These experiments provided the technical backdrop to test the full-scale Boeing 757 vertical tail model equipped with a fluidic oscillator system at the National Full-scale Aerodynamics Complex 40-by 80-foot Wind Tunnel, NASA Ames Research Center. The C_μ is shown to be an important parameter for scaling a fluidic oscillator AFC system from subscale to full-scale wind tunnel tests. The results of these tests provided the required rationale to use a fluidic oscillator AFC configuration for a follow-on flight test on the Boeing 757 ecoDemonstrator
Active Flow Control on Vertical Tail Models
Active flow control (AFC) subscale experiments were conducted at the Lucas Wind Tunnel of the California Institute of Technology. Tests were performed on a generic vertical tail model at low speeds. Fluidic oscillators were used at the trailing edge of the main element (vertical stabilizer) to redirect the flow over the rudder and delay or prevent flow separation. Side force increases in excess of 50% were achieved with a 2% momentum coefficient (C(sub )) input. The results indicated that a collective C(sub ) of about 1% could increase the side force by 3050%. This result is achieved by reducing the spanwise flow on the swept back wings that contributes to early flow separation near their tips. These experiments provided the technical backdrop to test the full-scale Boeing 757 vertical tail model equipped with a fluidic oscillator system at the National Full-scale Aerodynamics Complex 40-by 80-foot Wind Tunnel, NASA Ames Research Center. The C(sub ) is shown to be an important parameter for scaling a fluidic oscillator AFC system from subscale to full-scale wind tunnel tests. The results of these tests provided the required rationale to use a fluidic oscillator AFC configuration for a follow-on flight test on the Boeing 757 ecoDemonstrator
- …