1,718 research outputs found

    Inward and Outward Integral Equations and the KKR Method for Photons

    Full text link
    In the case of electromagnetic waves it is necessary to distinguish between inward and outward on-shell integral equations. Both kinds of equation are derived. A correct implementation of the photonic KKR method then requires the inward equations and it follows directly from them. A derivation of the KKR method from a variational principle is also outlined. Rather surprisingly, the variational KKR method cannot be entirely written in terms of surface integrals unless permeabilities are piecewise constant. Both kinds of photonic KKR method use the standard structure constants of the electronic KKR method and hence allow for a direct numerical application. As a by-product, matching rules are obtained for derivatives of fields on different sides of the discontinuity of permeabilities. Key words: The Maxwell equations, photonic band gap calculationsComment: (to appear in J. Phys. : Cond. Matter), Latex 17 pp, PRA-HEP 93/10 (exclusively English and unimportant misprints corrected

    Entropic Elasticity of Twist-Storing Polymers

    Get PDF
    We investigate the statistical mechanics of a torsionally constrained polymer. The polymer is modeled as a fluctuating rod with bend stiffness A kT and twist stiffness C kT. In such a model, thermal bend fluctuations couple geometrically to an applied torque through the relation Lk = Tw + Wr. We explore this coupling and find agreement between the predictions of our model and recent experimental results on single lambda-DNA molecules. This analysis affords an experimental determination of the microscopic twist stiffness (averaged over a helix repeat). Quantitative agreement between theory and experiment is obtained using C=109 nm. The theory further predicts a thermal reduction of the effective twist rigidity induced by bend fluctuations. Finally, we find a small reflection of molecular chirality in the experimental data and interpret it in terms of a twist-stretch coupling of the DNA duplex.Comment: 37 pages RevTeX, 2 postscript figures. Revisions include the analysis of new data and an investigation of non-perturbative effects. Postscript also available at http://www.physics.upenn.edu/~moro

    Dynamically-Stabilized Pores in Bilayer Membranes

    Get PDF
    Zhelev and Needham have recently created large, quasi-stable pores in artificial lipid bilayer vesicles [Biochim. Biophys. Acta 1147 (1993) 89]. Initially created by electroporation, the pores remain open for up to several seconds before quickly snapping shut. This result is surprising in light of the large line tension for holes in bilayer membranes and the rapid time scale for closure of large pores. We show how pores can be dynamically stabilized via a new feedback mechanism. We also explain quantitatively the observed sudden pore closure as a tangent bifurcation. Finally we show how Zhelev and Needham's experiment can be used to measure accurately the pore line tension, an important material parameter. For their SOPC/CHOL mixture we obtain a line tension of 2.6 10^{-6} erg/cm.Comment: 7 pages RevTeX, 3 included eps figures (published version). Postscript also available at http://dept.physics.upenn.edu/~moro

    Pulling hairpinned polynucleotide chains: Does base-pair stacking interaction matter?

    Full text link
    Force-induced structural transitions both in relatively random and in designed single-stranded DNA (ssDNA) chains are studied theoretically. At high salt conditions, ssDNA forms compacted hairpin patterns stabilized by base-pairing and base-pair stacking interactions, and a threshold external force is needed to pull the hairpinned structure into a random coiled one. The base-pair stacking interaction in the ssDNA chain makes this hairpin-coil conversion a discontinuous (first-order) phase transition process characterized by a force plateau in the force-extension curve, while lowering this potential below some critical level turns this transition into continuous (second-order) type, no matter how strong the base-pairing interaction is. The phase diagram (including hairpin-I, -II, and random coil) is discussed as a function of stacking potential and external force. These results are in quantitative agreement with recent experimental observations of different ssDNA sequences, and they reveal the necessity to consider the base-pair stacking interactions in order to understand the structural formation of RNA, a polymer designed by nature itself. The theoretical method used may be extended to study the long-range interaction along double-stranded DNA caused by the topological constraint of fixed linking number.Comment: 8 pages using Revte

    Voice morphing using the generative topographic mapping

    Get PDF
    In this paper we address the problem of Voice Morphing. We attempt to transform the spectral characteristics of a source speaker's speech signal so that the listener would believe that the speech was uttered by a target speaker. The voice morphing system transforms the spectral envelope as represented by a Linear Prediction model. The transformation is achieved by codebook mapping using the Generative Topographic Mapping, a non-linear, latent variable, parametrically constrained, Gaussian Mixture Model

    Wavelet-based voice morphing

    Get PDF
    This paper presents a new multi-scale voice morphing algorithm. This algorithm enables a user to transform one person's speech pattern into another person's pattern with distinct characteristics, giving it a new identity, while preserving the original content. The voice morphing algorithm performs the morphing at different subbands by using the theory of wavelets and models the spectral conversion using the theory of Radial Basis Function Neural Networks. The results obtained on the TIMIT speech database demonstrate effective transformation of the speaker identity

    How many orthonormal bases are needed to distinguish all pure quantum states?

    Get PDF
    We collect some recent results that together provide an almost complete answer to the question stated in the title. For the dimension d=2 the answer is three. For the dimensions d=3 and d>4 the answer is four. For the dimension d=4 the answer is either three or four. Curiously, the exact number in d=4 seems to be an open problem

    Resonance-Induced Effects in Photonic Crystals

    Get PDF
    For the case of a simple face-centered-cubic photonic crystal of homogeneous dielectric spheres, we examine to what extent single-sphere Mie resonance frequencies are related to band gaps and whether the width of a gap can be enlarged due to nearby resonances. Contrary to some suggestions, no spectacular effects may be expected. When the dielectric constant of the spheres ϵs\epsilon_s is greater than the dielectric constant ϵb\epsilon_b of the background medium, then for any filling fraction ff there exists a critical ϵc\epsilon_c above which the lowest lying Mie resonance frequency falls inside the lowest stop gap in the (111) crystal direction, close to its midgap frequency. If ϵs<ϵb\epsilon_s <\epsilon_b, the correspondence between Mie resonances and both the (111) stop gap and a full gap does not follow such a regular pattern. If the Mie resonance frequency is close to a gap edge, one can observe a resonance-induced widening of a relative gap width by ≈5\approx 5%.Comment: 14 pages, 3 figs., RevTex. For more info look at http://www.amolf.nl/external/wwwlab/atoms/theory/index.htm

    Correlation functions for 1d interacting fermions with spin-orbit coupling

    Full text link
    We compute correlation functions for one-dimensional electron systems which spin and charge degrees of freedom are coupled through spin-orbit coupling. Charge density waves, spin density waves, singlet- triplet- superconducting fluctuations are studied. We show that the spin-orbit interaction modify the exponents and the phase diagram of the system, changing the dominant fluctuations and making new susceptibilities diverge for low temperature.Comment: 5 pages, 3 figures. Accepted for publication in Phys. Rev.
    • …
    corecore