230 research outputs found
Indicatief consumentenonderzoek naar zuiveldesserts : vruchtenyoghurt en vanillevla met en zonder biologische claim
Met behulp van een indicatief consumentenonderzoek is getracht een antwoord te vinden op de vragen: - Kan er een optimum gevonden worden voor een aantal sensorische aspecten in vruchtenyoghurt en vla (met name voor zoetheid, romigheid en dikte)? - Welke invloed heeft de claim “biologisch” op de perceptie? - Is er verschil in perceptie tussen ‘reguliere’ en ‘biologische’ consumenten
A complex relationship among chemical concentration, detection threshold and suprathreshold intensity of bitter compounds
Detection thresholds and psychophysical curves were established for caffeine, quinine-HCl (QHCl), and propylthiouracil (PROP) in a sample of 33 subjects (28 female mean age 24 ± 4). The mean detection threshold (±standard error) for caffeine, QHCl, and PROP was 1.2 ± 0.12, 0.0083 ± 0.001, and 0.088 ± 0.07 mM, respectively. Pearson product–moment analysis revealed no significant correlations between detection thresholds of the compounds. Psychophysical curves were constructed for each bitter compound over 6 concentrations. There were significant correlations between incremental points of the individual psychophysical curves for QHCl and PROP. Regarding caffeine, there was a specific concentration (6 mM) below and above which the incremental steps in bitterness were correlated. Between compounds, analysis of psychophysical curves revealed no correlations with PROP, but there were significant correlations between the bitterness of caffeine and QHCl at higher concentrations on the psychophysical curve (P < 0.05). Correlation analysis of detection threshold and suprathreshold intensity within a compound revealed a significant correlation between PROP threshold and suprathreshold intensity (r = 0.46–0.4, P < 0.05), a significant negative correlation for QHCl (r = –0.33 to –0.4, P < 0.05), and no correlation for caffeine. The results suggest a complex relationship between chemical concentration, detection threshold, and suprathreshold intensity.<br /
Rhodium nanoparticles for ultraviolet plasmonics
The nonoxidizing catalytic noble metal rhodium is introduced for ultraviolet plasmonics. Planar tripods of 8 nm Rh nanoparticles, synthesized by a modified polyol reduction method, have a calculated local surface plasmon resonance near 330 nm. By attaching p-aminothiophenol, local field-enhanced Raman spectra and accelerated photodamage were observed under near-resonant ultraviolet illumination, while charge transfer simultaneously increased fluorescence for up to 13 min. The combined local field enhancement and charge transfer demonstrate essential steps toward plasmonically enhanced ultraviolet photocatalysis.This work has
been supported by NSF-ECCS-12-32239. This work was
partially supported by the Army’s In-house Laboratory
Innovative Research program. Financial support from USAITCA
(project no. W911NF-13-1-0245) and MICINN (Spanish
Ministry of Science and Innovation, project no. FIS2013-
45854-P) is also acknowledged
The individual environment, not the family is the most important influence on preferences for common non-alcoholic beverages in adolescence
Beverage preferences are an important driver of consumption, and strong liking for beverages high in energy (e.g. sugar-sweetened beverages [SSBs]) and dislike for beverages low in energy (e.g. non-nutritive sweetened beverages [NNSBs]) are potentially modifiable risk factors contributing to variation in intake. Twin studies have established that both genes and environment play important roles in shaping food preferences; but the aetiology of variation in non-alcoholic beverage preferences is unknown. 2865 adolescent twins (18–19-years old) from the Twins Early Development Study were used to quantify genetic and environmental influence on variation in liking for seven non-alcoholic beverages: SSBs; NNSBs; fruit cordials, orange juice, milk, coffee, and tea. Maximum Likelihood Structural Equation Modelling established that beverage preferences have a moderate to low genetic basis; from 18% (95% CI: 10%, 25%) for orange juice to 42% (36%, 43%) for fruit cordials. Aspects of the environment that are not shared by twin pairs explained all remaining variance in drink preferences. The sizeable unique environmental influence on beverage preferences highlights the potential for environmental modification. Policies and guidelines to change preferences for unhealthy beverages may therefore be best directed at the wider environment
Recommended from our members
Can information affect sensory perceptions? Evidence from a survey on Italian organic food consumers
This paper aims to investigate the influence of information on consumers’ preferences and sensory perceptions of organic food using a sample of 301 Italian organic food consumers. Consumers stated their preferences for “core organic” attributes, labels and information on food products and performed blind and informed tests on strawberry yoghurts and cookies. Data were analysed using descriptive analysis, Mann-Whitney U tests and Wilcoxon signed-rank test. Results revealed that consumers appreciate “core organic” attributes, like artisanal production and variability of sensory attributes. Comparing blind and informed tests, results showed that information affects the overall liking of products and consumers’ perception of product-specific sensory attributes. However, the influence of information on sensory perceptions depends on the product category, sensory attributes and the type of information provided
- …