61 research outputs found
Convolutional Radio Modulation Recognition Networks
We study the adaptation of convolutional neural networks to the complex
temporal radio signal domain. We compare the efficacy of radio modulation
classification using naively learned features against using expert features
which are widely used in the field today and we show significant performance
improvements. We show that blind temporal learning on large and densely encoded
time series using deep convolutional neural networks is viable and a strong
candidate approach for this task especially at low signal to noise ratio
An analysis on decentralized adaptive MAC protocols for Cognitive Radio networks
The scarcity of bandwidth in the radio spectrum has become more vital since the demand for more and more wireless applications has increased. Most of the spectrum bands have been allocated although many studies have shown that these bands are significantly underutilized most of the time. The problem of unavailability of spectrum and inefficiency in its utilization has been smartly addressed by the Cognitive Radio (CR) Technology which is an opportunistic network that senses the environment, observes the network changes, and then using knowledge gained from the prior interaction with the network, makes intelligent decisions by dynamically adapting their transmission characteristics. In this paper some of the decentralized adaptive MAC protocols for CR networks have been critically analyzed and a novel adaptive MAC protocol for CR networks, DNG-MAC which is decentralized and non-global in nature, has been proposed. The results show the DNG-MAC out performs other CR MAC protocols in terms of time and energy efficiency
- …