262 research outputs found
Lessons learnt from a rockfall time series analysis: data collection, statistical analysis, and applications
Historical rockfall catalogues are important data sources for the investigation of the temporal occurrence of rockfalls, which is crucial
information for rockfall hazard and risk assessments. However, such catalogues are rare and often incomplete. Here, we selected and analysed
seven catalogues of historical rockfalls in Austria, Italy, and the USA to
highlight existing relationships between data collection and mapping methods and representativeness of the resulting rockfall records. Heuristic and simple statistically based frequency analysis methods are applied to describe and compare the different historical rockfall catalogues. Our
results show that the mapping strategy may affect the frequency of the assessed rockfall occurrence and the completeness and representativeness of the related time series of historical rockfalls. We conclude by presenting the advantages and limitations of the application of different frequency-based methods for analysing rockfall catalogues and providing recommendations for rockfall mapping. We furthermore present non-parametric statistical methods for dealing with typically small rockfall datasets, which are particularly suited for the characterization of basic rockfall catalogues. Such recommendations should help in the definition of standards for collecting and using temporal rockfall data in hazard and risk assessments.</p
Calcification in a marginal sea - influence of seawater [Ca2+] and carbonate chemistry on bivalve shell formation
In estuarine coastal systems such as the Baltic Sea, mussels suffer from low salinity which limits their distribution. Anthropogenic climate change is expected to cause further desalination which will lead to local extinctions of mussels in the low saline areas. It is commonly accepted that mussel distribution is limited by osmotic stress. However, along the salinity gradient environmental conditions for biomineralization are successively becoming more adverse as a result of reduced [Ca2+] and dissolved inorganic carbon (CT) availability. In larvae, calcification is an essential process starting during early development with formation of the prodissoconch I (PD I) shell which is completed under optimal conditions within 2 days.
Experimental manipulations of seawater [Ca2+] start to impair PD I formation in Mytilus larvae at concentrations below 3 mM, which corresponds to conditions present in the Baltic at salinities below 8 g kg-1. In addition, lowering dissolved inorganic carbon to critical concentrations (< 1 mM) similarly affected PD I size which was well correlated with calculated ΩAragonite and [Ca2+][HCO3-]/[H+] in all treatments. Comparing results for larvae from the western Baltic with a population from the central Baltic revealed significantly higher tolerance of PD I formation to lowered [Ca2+] and [Ca2+][HCO3-]/[H+] in the low saline adapted population. This may result from genetic adaptation to the more adverse environmental conditions prevailing in the low saline areas of the Baltic.
The combined effects of lowered [Ca2+] and adverse carbonate chemistry represent major limiting factors for bivalve calcification and can thereby contribute to distribution limits of mussels in the Baltic Sea
CO2 induced seawater acidification impacts sea urchin larval development I: Elevated metabolic rates decrease scope for growth and induce developmental delay
Anthropogenic CO(2) emissions are acidifying the world's oceans. A growing body of evidence is showing that ocean acidification impacts growth and developmental rates of marine invertebrates. Here we test the impact of elevated seawater pCO(2) (129Pa, 1271 atm) on early development, larval metabolic and feeding rates in a marine model organism, the sea urchin Strongylocentrotus purpuratus. Growth and development was assessed by measuring total body length, body rod length, postoral rod length and posterolateral rod length. Comparing these parameters between treatments suggests that larvae suffer from a developmental delay (by ca. 8%) rather than from the previously postulated reductions in size at comparable developmental stages. Further, we found maximum increases in respiration rates of +100% under elevated pCO(2), while body length corrected feeding rates did not differ between larvae from both treatments. Calculating scope for growth illustrates that larvae raised under high pCO(2) spent an average of 39 to 45% of the available energy for somatic growth, while control larvae could allocate between 78 and 80% of the available energy into growth processes. Our results highlight the importance of defining a standard frame of reference when comparing a given parameter between treatments, as observed differences can be easily due to comparison of different larval ages with their specific set of biological characters
Abiotic conditions in cephalopod (Sepia officinalis) eggs: embryonic development at low pH and high pCO2
Low pO(2) values have been measured in the perivitelline fluids (PVF) of marine animal eggs on several occasions, especially towards the end of development, when embryonic oxygen consumption is at its peak and the egg case acts as a massive barrier to diffusion. Several authors have therefore suggested that oxygen availability is the key factor leading to hatching. However, there have been no measurements of PVF pCO(2) so far. This is surprising, as elevated pCO(2) could also constitute a major abiotic stressor for the developing embryo. As a first attempt to fill this gap in knowledge, we measured pO(2), pCO(2) and pH in the PVF of late cephalopod (Sepia officinalis) eggs. We found linear relationships between embryo wet mass and pO(2), pCO(2) and pH. pO(2) declined from > 12 kPa to less than 5 kPa, while pCO(2) increased from 0.13 to 0.41 kPa. In the absence of active accumulation of bicarbonate in the PVF, pH decreased from 7.7 to 7.2. Our study supports the idea that oxygen becomes limiting in cephalopod eggs towards the end of development; however, pCO(2) and pH shift to levels that have caused significant physiological disturbances in other marine ectothermic animals. Future research needs to address the physiological adaptations that enable the embryo to cope with the adverse abiotic conditions in their egg environment
HSP90 is essential for Jak-STAT signaling in classical Hodgkin lymphoma cells
In classical Hodgkin lymphoma (cHL) chemotherapeutic regimens are associated with stagnant rates of secondary malignancies requiring the development of new therapeutic strategies. We and others have shown that permanently activated Signal Transducer and Activator of Transcription (STAT) molecules are essential for cHL cells. Recently an overexpression of heat-shock protein 90 (HSP90) in cHL cells has been shown and inhibition of HSP90 seems to affect cHL cell survival. Here we analysed the effects of HSP90 inhibition by geldanamycin derivative 17-AAG or RNA interference (RNAi) on aberrant Jak-STAT signaling in cHL cells. Treatment of cHL cell lines with 17-AAG led to reduced cell proliferation and a complete inhibition of STAT1, -3, -5 and -6 tyrosine phosphorylation probably as a result of reduced protein expression of Janus kinases (Jaks). RNAi-mediated inhibition of HSP90 showed similar effects on Jak-STAT signaling in L428 cHL cells. These results suggest a central role of HSP90 in permanently activated Jak-STAT signaling in cHL cells. Therapeutics targeting HSP90 may be a promising strategy in cHL and other cancer entities associated with deregulated Jak-STAT pathway activation
Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants
I summarize marine studies on plastic versus adaptive responses to global change. Due to the lack of time series, this review focuses largely on the potential for adaptive evolution in marine animals and plants. The approaches were mainly synchronic comparisons of phenotypically divergent populations, substituting spatial contrasts in temperature or CO2 environments for temporal changes, or in assessments of adaptive genetic diversity within populations for traits important under global change. The available literature is biased towards gastropods, crustaceans, cnidarians and macroalgae. Focal traits were mostly environmental tolerances, which correspond to phenotypic buffering, a plasticity type that maintains a functional phenotype despite external disturbance. Almost all studies address coastal species that are already today exposed to fluctuations in temperature, pH and oxygen levels. Recommendations for future research include (i) initiation and analyses of observational and experimental temporal studies encompassing diverse phenotypic traits (including diapausing cues, dispersal traits, reproductive timing, morphology) (ii) quantification of nongenetic trans-generational effects along with components of additive genetic variance (iii) adaptive changes in microbe–host associations under the holobiont model in response to global change (iv) evolution of plasticity patterns under increasingly fluctuating environments and extreme conditions and (v) joint consideration of demography and evolutionary adaptation in evolutionary rescue approaches
Ocean acidification and temperature rise: effects on calcification during early development of the cuttlefish Sepia officinalis
This study investigated the effects of seawater pH (i.e., 8.10, 7.85 and 7.60) and temperature (16 and 19 °C) on (a) the abiotic conditions in the fluid surrounding the embryo (viz. the perivitelline fluid), (b) growth, development and (c) cuttlebone calcification of embryonic and juvenile stages of the cephalopod Sepia officinalis. Egg swelling increased in response to acidification or warming, leading to an increase in egg surface while the interactive effects suggested a limited plasticity of the swelling modulation. Embryos experienced elevated pCO2 conditions in the perivitelline fluid (>3-fold higher pCO2 than that of ambient seawater), rendering the medium under-saturated even under ambient conditions. The growth of both embryos and juveniles was unaffected by pH, whereas 45Ca incorporation in cuttlebone increased significantly with decreasing pH at both temperatures. This phenomenon of hypercalcification is limited to only a number of animals but does not guarantee functional performance and calls for better mechanistic understanding of calcification processes
Juvenile king scallop, Pecten maximus, is potentially tolerant to low levels of ocean acidification when food is unrestricted.
The decline in ocean water pH and changes in carbonate saturation states through anthropogenically mediated increases in atmospheric CO2 levels may pose a hazard to marine organisms. This may be particularly acute for those species reliant on calcareous structures like shells and exoskeletons. This is of particular concern in the case of valuable commercially exploited species such as the king scallop, Pecten maximus. In this study we investigated the effects on oxygen consumption, clearance rates and cellular turnover in juvenile P. maximus following 3 months laboratory exposure to four pCO2 treatments (290, 380, 750 and 1140 µatm). None of the exposure levels were found to have significant effect on the clearance rates, respiration rates, condition index or cellular turnover (RNA: DNA) of individuals. While it is clear that some life stages of marine bivalves appear susceptible to future levels of ocean acidification, particularly under food limiting conditions, the results from this study suggest that where food is in abundance, bivalves like juvenile P. maximus may display a tolerance to limited changes in seawater chemistry
New insights into ion regulation of cephalopod molluscs: a role of epidermal ionocytes in acid-base regulation during embryogenesis
The constraints of an active life in a pelagic habitat led to numerous convergent morphological and physiological adaptations that enable cephalopod molluscs and teleost fishes to compete for similar resources. Here we show for the first time that such convergent developments are also found in the ontogenetic progression of ion regulatory tissues: as in teleost fish epidermal ionocytes scattered on skin and yolk sac of cephalopod embryos appear to be responsible for ionic and acid-base regulation before gill epithelia become functional. Ion and acid-base regulation is crucial in cephalopod embryos, as they are surrounded by a hypercapnic egg fluid with a pCO2 of 0.2-0.4 kPa. Epidermal ionocytes were characterized via immunohistochemistry, in situ hybridization and vital dye staining techniques. We found one group of cells that is recognized by Concavalin A and MitoTracker, which also expresses Na+/H+ exchangers (NHE) and Na+/K+-ATPase. Similar to findings obtained in teleosts these NHE3-rich cells take up sodium in exchange for protons, illustrating the energetic superiority of NHE based proton excretion in marine systems. In vivo electrophysiological techniques demonstrated that acid equivalents are secreted by the yolk and skin integument. Intriguingly, epidermal ionocytes of cephalopod embryos are ciliated as demonstrated by scanning electron microscopy suggesting a dual function of epithelial cells in water convection and ion regulation. These findings add significant knowledge to our mechanistic understanding of hypercapnia tolerance in marine organisms, as it demonstrates that marine taxa which were identified as powerful acid-base regulators during hypercapnic challenges already exhibit strong acid-base regulatory abilities during embryogenesis
- …