169 research outputs found
Probing the properties of Be star discs with spectroastrometry and NLTE radiative transfer modelling: beta CMi
While the presence of discs around classical Be stars is well established,
their origin is still uncertain. To understand what processes result in the
creation of these discs and how angular momentum is transported within them,
their physical properties must be constrained. This requires comparing high
spatial and spectral resolution data with detailed radiative transfer
modelling. We present a high spectral resolution, R~80,000, sub milli-arcsecond
precision, spectroastrometric study of the circumstellar disc around the Be
star beta CMi. The data are confronted with three-dimensional, NLTE radiative
transfer calculations to directly constrain the properties of the disc.
Furthermore, we compare the data to disc models featuring two velocity laws;
Keperian, the prediction of the viscous disc model, and angular momentum
conserving rotation. It is shown that the observations of beta CMi can only be
reproduced using Keplerian rotation. The agreement between the model and the
observed SED, polarisation and spectroastrometric signature of beta CMi
confirms that the discs around Be stars are well modelled as viscous decretion
discs.Comment: Accepted for publication in MNRA
Sub-milliarcsecond precision spectro-astrometry of Be stars
The origin of the disks around Be stars is still not known. Further progress
requires a proper parametrization of their structure, both spatially and
kinematically. This is challenging as the disks are very small. Here we assess
whether a novel method is capable of providing these data. We obtained spectro
astrometry around the Pa beta line of two bright Be stars, alpha Col and zeta
Tau, to search for disk signatures. The data, with a pixel to pixel precision
of the centroid position of 0.3..0.4 milliarcsecond is the most accurate such
data to date. Artefacts at the 0.85 mas level are present in the data, but
these are readily identified as they were non-repeatable in our redundant
datasets. This does illustrate the need of taking multiple data to avoid
spurious detections. The data are compared with simple model simulations of the
spectro astrometric signatures due to rotating disks around Be stars. The upper
limits we find for the disk radii correspond to disk sizes of a few dozen
stellar radii if they rotate Keplerian. This is very close to observationally
measured and theoretically expected disk sizes, and this paper therefore
demonstrates that spectro-astrometry, of which we present the first such
attempt, has the potential to resolve the disks around Be stars.Comment: 6 pages, A&A accepte
Time, spatial, and spectral resolution of the Halpha line-formation region of Deneb and Rigel with the VEGA/CHARA interferometer
BA-type supergiants are amongst the most optically-bright stars. They are
observable in extragalactic environments, hence potential accurate distance
indicators. Emission activity in the Halpha line of the BA supergiants Rigel
(B8Ia) and Deneb (A2Ia) is indicative of presence of localized time-dependent
mass ejections. Here, we employ optical interferometry to study the Halpha
line-formation region in these stellar environments. High spatial- (0.001
arcsec) and spectral- (R=30 000) resolution observations of Halpha were
obtained with the visible recombiner VEGA installed on the CHARA
interferometer, using the S1S2 array-baseline (34m). Six independent
observations were done on Deneb over the years 2008 and 2009, and two on Rigel
in 2009. We analyze this dataset with the 1D non-LTE radiative-transfer code
CMFGEN, and assess the impact of the wind on the visible and near-IR
interferometric signatures, using both Balmer-line and continuum photons. We
observe a visibility decrease in Halpha for both Rigel and Deneb, suggesting
that the line-formation region is extended (1.5-1.75 R*). We observe a
significant visibility decrease for Deneb in the SiII6371 line. We witness time
variations in the differential phase for Deneb, implying an inhomogeneous and
unsteady circumstellar environment, while no such variability is seen in
differential visibilities. Radiative-transfer modeling of Deneb, with allowance
for stellar-wind mass loss, accounts fairly well for the observed decrease in
the Halpha visibility. Based on the observed differential visibilities, we
estimate that the mass-loss rate of Deneb has changed by less than 5%
Improving the surface brightness-color relation for early-type stars using optical interferometry
The aim of this work is to improve the SBC relation for early-type stars in
the color domain, using optical interferometry.
Observations of eight B- and A-type stars were secured with the VEGA/CHARA
instrument in the visible. The derived uniform disk angular diameters were
converted into limb darkened angular diameters and included in a larger sample
of 24 stars, already observed by interferometry, in order to derive a revised
empirical relation for O, B, A spectral type stars with a V-K color index
ranging from -1 to 0. We also took the opportunity to check the consistency of
the SBC relation up to using 100 additional measurements. We
determined the uniform disk angular diameter for the eight following stars:
Ori, Per, Cyg, Her, Aql, Peg,
Lyr, and Cyg with V-K color ranging from -0.70 to 0.02 and
typical precision of about . Using our total sample of 132 stars with
colors index ranging from about to , we provide a revised SBC
relation. For late-type stars (), the results are consistent
with previous studies. For early-type stars (), our new
VEGA/CHARA measurements combined with a careful selection of the stars
(rejecting stars with environment or stars with a strong variability), allows
us to reach an unprecedented precision of about 0.16 magnitude or
in terms of angular diameter.Comment: 13 pages, 5 figures, accepted for publication in A&
Grown-up stars physics with MATISSE
MATISSE represents a great opportunity to image the environment around
massive and evolved stars. This will allow one to put constraints on the
circumstellar structure, on the mass ejection of dust and its reorganization ,
and on the dust-nature and formation processes. MATISSE measurements will often
be pivotal for the understanding of large multiwavelength datasets on the same
targets collected through many high-angular resolution facilities at ESO like
sub-millimeter interferometry (ALMA), near-infrared adaptive optics (NACO,
SPHERE), interferometry (PIONIER, GRAVITY), spectroscopy (CRIRES), and
mid-infrared imaging (VISIR). Among main sequence and evolved stars, several
cases of interest have been identified that we describe in this paper.Comment: SPIE, Jun 2016, Edimbourgh, Franc
Spectral and spatial imaging of the Be+sdO binary phi Persei
The rapidly rotating Be star phi Persei was spun up by mass and angular
momentum transfer from a now stripped-down, hot subdwarf companion. Here we
present the first high angular resolution images of phi Persei made possible by
new capabilities in longbaseline interferometry at near-IR and visible
wavelengths. We observed phi Persei with the MIRC and VEGA instruments of the
CHARA Array. Additional MIRC-only observations were performed to track the
orbital motion of the companion, and these were fit together with new and
existing radial velocity measurements of both stars to derive the complete
orbital elements and distance. The hot subdwarf companion is clearly detected
in the near-IR data at each epoch of observation with a flux contribution of
1.5% in the H band, and restricted fits indicate that its flux contribution
rises to 3.3% in the visible. A new binary orbital solution is determined by
combining the astrometric and radial velocity measurements. The derived stellar
masses are 9.6+-0.3Msol and 1.2+-0.2Msol for the Be primary and subdwarf
secondary, respectively. The inferred distance (186 +- 3 pc), kinematical
properties, and evolutionary state are consistent with membership of phi Persei
in the alpha Per cluster. From the cluster age we deduce significant
constraints on the initial masses and evolutionary mass transfer processes that
transformed the phi Persei binary system. The interferometric data place strong
constraints on the Be disk elongation, orientation, and kinematics, and the
disk angular momentum vector is coaligned with and has the same sense of
rotation as the orbital angular momentum vector. The VEGA visible continuum
data indicate an elongated shape for the Be star itself, due to the combined
effects of rapid rotation, partial obscuration of the photosphere by the
circumstellar disk, and flux from the bright inner disk.Comment: 16 pages, 6 figures, 1 Anne
Be Stars: Rapidly Rotating Pulsators
I will show that Be stars are, without exception, a class of rapidly rotating
stars, which are in the majority of cases pulsating stars as well, while none
of them does possess a large scale (i.e. with significant dipolar contribution)
magnetic field.Comment: Review talk given at "XX Stellar Pulsation Conference Series: Impact
of new instrumentation and new insights in stellar pulsations", Granada, 5-9
September 2011, in press in AIP Conf. Se
Multi-epoch VLTI-PIONIER imaging of the supergiant V766 Cen: Image of the close companion in front of the primary
Context. The star V766 Cen (=HR 5171A) was originally classified as a yellow hypergiant but lately found to more likely be a 27−36 M⊙ red supergiant (RSG). Recent observations indicated a close eclipsing companion in the contact or common-envelope phase
- …