608 research outputs found
Zinc calixarene complexes for the ring opening polymerization of cyclic esters
Reaction of Zn(C₆F₅)₂·toluene (two equivalents) with 1,3-dipropoxy-p-tert-butyl-calix[4]arene (L¹H₂) led to the isolation of the complex [{Zn(C₆F₅)}₂L¹] (1), whilst similar use of Zn(Me)₂ resulted in the known complex [{Zn(Me)}₂L¹] (2). Treatment of L¹H₂ with in situ prepared Zn{N(SiMe₃)₂}₂ in refluxing toluene led to the isolation of the compound [(Na)ZnN(SiMe₃)₂L¹] (3). The stepwise reaction of L¹H₂ and sodium hydride, followed by ZnCl₂ and finally NaN(SiMe₃)₂ yielded the compound [Zn{N(SiMe₃)₂}₂L¹] (4). The reaction between three equivalents of Zn(C₆F₅)₂·toluene and oxacalix[3]arene (L²H₃) at room temperature formed the compound {[Zn(C₆F₅)]₃L²} (5); heating of 5 in acetonitrile caused the ring opening of the parent oxacalix[3]arene and rearrangement to afford the complex [(L²)Zn₆(C₆F₅)(R)(RH)OH]·5MeCN R = C₆F₅CH₂-(p-ᵗBuPhenolate-CH₂OCH₂–)₂–p-ᵗBuPhenolate-CH₂O⁻)³⁻ (6). The molecular structures of the new complexes 1, 3 and 6, together with that of the known complex 2, whose solid state structure has not previously been reported, have been determined. Compounds 1, 3–5 have been screened for the ring opening polymerization (ROP) of ε-caprolactone (ε-CL) and rac-lactide. Compounds featuring a Zn–C₆F₅ fragment were found to be poor ROP pre-catalysts as they did not react with benzyl alcohol to form an alkoxide. By contrast, compound 4, which contains a zinc silylamide linkage, was the most active of the zinc-based calix[4]arene compounds screened and was capable of ROP at ambient temperature with 65% conversion over 4 h
Vanadium(V) tetra-phenolate complexes: synthesis, structural studies and ethylene homo-(co-)polymerization capability
Reaction of α,α,α′,α′-tetrakis(3,5-di-tert-butyl-2-hydroxyphenyl)-p-xylene (p-L¹H₄) with two equivalents of [VO(OR)₃] (R = nPr, tBu) in refluxing toluene afforded, after work-up, the complexes {[VO(OnPr)(THF)]₂ (μ-p-L¹)}·2(THF) (1·2(THF)) or {[VO(OtBu)]₂ (μ-p-L¹)}·2MeCN (2·2MeCN), respectively in moderate to good yield. A similar reaction using the meta pro-ligand, namely α,α,α′,α′-tetrakis(3,5-di-tert-butyl-2-hydroxyphenyl)-m-xylene (m-L²H₄) afforded the complex {[VO(OnPr)(THF)]₂ (μ-p-L²)} (3). Use of [V(Np-R¹C₆H₄)(tBuO)₃] (R¹ = Me, CF₃) with p-L¹H₄ led to the isolation of the oxo–imido complexes {[VO(tBuO)][V(Np-R¹C₆H₄) (tBuO)](μ-p-L¹)} (R¹ = Me, 4·CH2Cl₂; CF₃, 5·CH2Cl₂), whereas use of [V(Np-R¹C₆H₄)CL³] (R¹ = Me, CF₃) in combination with Et₃N/p-L¹H₄ or p-L¹Na₄ afforded the diimido complexes {[V(Np-MeC₆H₄)(THF)Cl]₂ (μ-p-L¹)}·4toluene (6·4toluene) or {[V(Np-CF₃C₆H₄)(THF)Cl]₂ (μ-p-L¹)} (7). For comparative studies, the complex [(VO)(μ-OnPr)L³]₂ (8) has also been prepared via the interaction of [VO(nPrO)₃] and 2-(α-(2-hydroxy-3,5-di-tert-butylphenyl)benzyl)-4,6-di-tert-butylphenol (L³H2). The crystal structures of 1·2THF, 2·2MeCN, 3, 4·CH2Cl₂, 5·CH2Cl₂, 6·4toluene·THF, 7 and 8 have been determined. Complexes 1–3 and 5–8 have been screened as pre-catalysts for the polymerization of ethylene in the presence of a variety of co-catalysts (with and without a re-activator), including DMAC (dimethylaluminium chloride), DEAC (diethylaluminium chloride), EADC (ethylaluminium dichloride) and EASC (ethylaluminium sesquichloride) at various temperatures and for the co-polymerization of ethylene with propylene; results are compared versus the benchmark catalyst [VO(OEt)Cl₂]. In some cases, activities as high as 243 400 g mmol⁻¹ V⁻¹ h⁻¹ (30.43 kgPE mmol V⁻¹ h⁻¹ bar⁻¹) were achievable, whilst it also proved possible to obtain higher molecular weight polymers (in comparable yields to the use of [VO(OEt)Cl₂]). In all cases with dimethylaluminium chloride (DMAC)/ethyltrichloroacetate (ETA) activation, the activities achieved surpassed those of the benchmark catalyst. In the case of the co-polymerization of ethylene with propylene, complexes 1–3 and 5–8 showed comparable or higher molecular weight than [VO(OEt)Cl₂] with comparable catalytic activities or higher in the case of the imido complexes 6 and 7
Vanadium(V) oxo and imido calix[8]arene complexes: synthesis, structural studies, and ethylene homo/copolymerisation capability
Interaction of p-tert-butylcalix[8]areneH₈ (L⁸H₈) with in-situ generated [NaVO(Ot-Bu)₄] (from VOCl₃ and four equivalents of NaOtBu) afforded the dark brown complex [Na(NCMe)₅][(VO)₂L⁸H]·4MeCN (1·4MeCN), in which the calix[8]arene adopts a saddle-shaped conformation. Increasing (to four equivalents per L⁸) the amount of [NaVO(Ot-Bu)₄] present in the reaction, led to the formation of the yellow octa-vanadyl complex {[(Na(VO)₄L⁸)(Na(NCMe))₃] [Na(NCMe)₆}₂·10MeCN (2·10MeCN), in which the calix[8]arene adopts a pleated loop conformation. In the presence of adventitious oxygen, reaction of four equivalents of [VO(Ot-Bu)₃] (generated from VOCl₃ and 3KOtBu) with L⁸H₈ afforded the alkali-metal free green complex [(VO)₄L⁸(μ³-O)₂] (3); the solvates 3·3MeCN and 3·3CH₂Cl₂ have been isolated. In both solvates, the L⁸ ligand adopts a shallow saddle-shaped conformation, supporting a core comprising of a (VO)₄O₄ ladder. In the case of lithium, in order to obtain crystalline material, it was found necessary to reverse the order of addition such that lithium tert-butoxide was added to L⁸H₈, and then subsequently treated (at –78 ⁰C) with two equivalents of VOCl₃; crystallization from tetrahydrofuran (THF) afforded {(VO₂)₂Li₆[L⁸](thf)₂(OtBu)₂(Et₂O)₂}·Et₂O (4·Et₂O). In the structure of 4·Et₂O, vanadium, lithium and oxygen form a central lattern-type cage, which is capped top and bottom by an Li₂O₂2 diamond; the calix[8]arene is in a ‘down, down, out, out, down, down’ conformation. When the ‘same reaction’ was extracted into acetonitrile (MeCN), the salt complex [Li(NCMe)₄][(VO)₂L⁸H]·8MeCN (5.8MeCN) was formed. In 5·8MeCN, the [Li(NCMe)₄] cations reside between the anions in the clefts of L⁸H, the latter adopting a saddle-shaped conformation. Use of the imido precursors [V(Nt-Bu)(Ot-Bu)₃] and [V(Np-tolyl)(Ot-Bu)₃] and L⁸H₈, afforded, via an imido exchange, the salt [t-BuNH₃]{[V(p-tolylN)]₂L⁸H}·3½MeCN (6·3½MeCN). The molecular structures of 1 to 6 are reported; data collections for complexes 2·10MeCN, 3·3MeCN and 3·3CH₂Cl₂ required the use of synchrotron radiation. Complexes 1, 3 and 4 have been screened as pre-catalysts for the polymerization of ethylene in the presence of a variety of co-catalysts (with and without a re-activator) at various temperatures and for the co-polymerization of ethylene with propylene; results are compared versus the benchmark catalyst VO(OEt)Cl₂. In some cases, activities as high as 136,000 g/mmol.v.h were achievable, whilst it also proved possible to obtain higher molecular weight polymers (in comparible yields) versus the use of VO(OEt)Cl₂. In the case of the co-polymerization, the incorporation of propylene was 7.1 – 10.9 mol% (cf 10 mol% for VO(OEt)Cl₂), though catalytic activities were lower versus VO(OEt)Cl₂
A Rapidly Spinning Black Hole Powers the Einstein Cross
Observations over the past 20 years have revealed a strong relationship
between the properties of the supermassive black hole (SMBH) lying at the
center of a galaxy and the host galaxy itself. The magnitude of the spin of the
black hole will play a key role in determining the nature of this relationship.
To date, direct estimates of black hole spin have been restricted to the local
Universe. Herein, we present the results of an analysis of 0.5 Ms of
archival Chandra observations of the gravitationally lensed quasar Q 2237+305
(aka the "Einstein-cross"), lying at a redshift of z = 1.695. The boost in flux
provided by the gravitational lens allows constraints to be placed on the spin
of a black hole at such high redshift for the first time. Utilizing state of
the art relativistic disk reflection models, the black hole is found to have a
spin of at the 90% confidence level. Placing a
lower limit on the spin, we find (4). The high value of
the spin for the black hole in Q 2237+305 lends
further support to the coherent accretion scenario for black hole growth. This
is the most distant black hole for which the spin has been directly constrained
to date.Comment: 5 pages, 3 figures, 1 table, formatted using emulateapj.cls. Accepted
for publication in ApJ
Advancing imaging technologies for patients with spinal pain : with a focus on whiplash injury
Background: Radiological observations of soft-tissue changes that may relate to clinical symptoms in patients with traumatic and non-traumatic spinal disorders are highly controversial. Studies are often of poor quality and findings are inconsistent. A plethora of evidence suggests some pathoanatomical findings from traditional imaging applications are common in asymptomatic participants across the life span, which further questions the diagnostic, prognostic, and theranostic value of traditional imaging. Although we do not dispute the limited evidence for the clinical importance of most imaging findings, we contend that the disparate findings across studies may in part be due to limitations in the approaches used in assessment and analysis of imaging findings.
Purpose: This clinical commentary aimed to (1) briefly detail available imaging guidelines, (2) detail research-based evidence around the clinical use of findings from advanced, but available, imaging applications (eg, fat and water magnetic resonance imaging and magnetization transfer imaging), and (3) introduce how evolving imaging technologies may improve our mechanistic understanding of pain and disability, leading to improved treatments and outcomes.
Study Design/Setting: A non-systematic review of the literature is carried out.
Methods: A narrative summary (including studies from the authors' own work in whiplash injuries) of the available literature is provided.
Results: An emerging body of evidence suggests that the combination of existing imaging sequences or the use of developing imaging technologies in tandem with a good clinical assessment of modifiable risk factors may provide important diagnostic information toward the exploration and development of more informed and effective treatment options for some patients with traumatic neck pain.
Conclusions: Advancing imaging technologies may help to explain the seemingly disconnected spectrum of biopsychosocial signs and symptoms of traumatic neck pain
Vanadium(v) tetra-phenolate complexes: synthesis, structural studies and ethylene homo-(co-) polymerization capability
Reaction of the ligand α,α,α′,α′-tetrakis(3,5-di-tert-butyl-2-hydroxyphenyl)-p-xylene (p-L1H4) with two equivalents of [VO(OR)3] (R = nPr, tBu) in refluxing toluene afforded, after work-up, the complexes {[VO(OnPr)(THF)]2(-p-L1)}·2(THF) (1·2(THF)) or {[VO(OtBu)]2(-p-L1)}·2MeCN (2·2MeCN), respectively in moderate to good yield. A similar reaction using the meta ligand, namely α,α,α′,α′-tetrakis(3,5-di-tert-butyl-2-hydroxyphenyl)-m-xylene (m-L2H4) afforded the complex {[VO(OnPr)(THF)]2(-p-L2)} (3). Use of [V(Np-R1C6H4)(tBuO)3] (R1 = Me, CF3) with p-L1H4 led to the isolation of the oxo-imido complexes {[VO(tBuO)][V(Np-R1C6H4)(tBuO)](-p-L1)} (R1 = Me, 4·CH2Cl2; CF3, 5·CH2Cl2), whereas use of [V(Np-R1C6H4)Cl3] (R1 = Me, CF3) in combination with Et3N/p-L1H4 or p-L1Na4 afforded the diimido complexes {[V(Np-MeC6H4)(THF)Cl]2(-p-L1)}·4toluene (6·4toluene) or {[V(Np-CF3C6H4)(THF)Cl]2(-p-L1)} (7). For comparative studies, the complex [(VO)(μ-OnPr)L3]2 (8) has also been prepared via the interaction of [VO(nPrO)3] and 2-(α-(2-hydroxy-3,5-di-tert-butylphenyl)benzyl)-4,6-di-tert-butylphenol (L3H2). The crystal structures of 1·2THF, 2·2MeCN, 3, 4·CH2Cl2, 5·CH2Cl2, 6·4toluene·thf, 7 and 8 have been determined. Complexes 1 – 3 and 5 - 8 have been screened as pre-catalysts for the polymerization of ethylene in the presence of a variety of co-catalysts (with and without a re-activator), including DMAC (dimethylaluminium chloride), DEAC (diethylaluminium chloride), EADC (ethylaluminium dichloride) and EASC (ethylaluminium sesquichloride) at various temperatures and for the co-polymerization of ethylene with propylene; results are compared versus the benchmark catalyst [VO(OEt)Cl2]. In some cases, activities as high as 243,400 g/mmolV.h (30.43 Kg PE/mmolV.h.bar) were achievable, whilst it also proved possible to obtain higher molecular weight polymers (in comparable yields to the use of [VO(OEt)Cl2]). In all cases with dimethylaluminium chloride (DMAC)/ethyltrichloroacetate (ETA) activation, the activities achieved surpassed those of the benchmark catalyst. In the case of the co-polymerization of ethylene with propylene, Complexes 1 – 3 and 5 - 8 showed comparable or higher molecular weight than [VO(OEt)Cl2] with comparable catalytic activities or higher in the case of the imido complexes 6 and 7
Affine su(3) and su(4) fusion multiplicities as polytope volumes
Affine su(3) and su(4) fusion multiplicities are characterised as discretised
volumes of certain convex polytopes. The volumes are measured explicitly,
resulting in multiple sum formulas. These are the first polytope-volume
formulas for higher-rank fusion multiplicities. The associated threshold levels
are also discussed. For any simple Lie algebra we derive an upper bound on the
threshold levels using a refined version of the Gepner-Witten depth rule.Comment: 16 pages, LaTe
Shocks in supersonic sand
We measure time-averaged velocity, density, and temperature fields for steady
granular flow past a wedge and calculate a speed of granular pressure
disturbances (sound speed) equal to 10% of the flow speed. The flow is
supersonic, forming shocks nearly identical to those in a supersonic gas.
Molecular dynamics simulations of Newton's laws and Monte Carlo simulations of
the Boltzmann equation yield fields in quantitative agreement with experiment.
A numerical solution of Navier-Stokes-like equations agrees with a molecular
dynamics simulation for experimental conditions excluding wall friction.Comment: 4 pages, 5 figure
VIS: the visible imager for Euclid
Euclid-VIS is a large format visible imager for the ESA Euclid space mission
in their Cosmic Vision program, scheduled for launch in 2019. Together with the
near infrared imaging within the NISP instrument it forms the basis of the weak
lensing measurements of Euclid. VIS will image in a single r+i+z band from
550-900 nm over a field of view of ~0.5 deg2. By combining 4 exposures with a
total of 2240 sec, VIS will reach to V=24.5 (10{\sigma}) for sources with
extent ~0.3 arcsec. The image sampling is 0.1 arcsec. VIS will provide deep
imaging with a tightly controlled and stable point spread function (PSF) over a
wide survey area of 15000 deg2 to measure the cosmic shear from nearly 1.5
billion galaxies to high levels of accuracy, from which the cosmological
parameters will be measured. In addition, VIS will also provide a legacy
imaging dataset with an unprecedented combination of spatial resolution, depth
and area covering most of the extra-Galactic sky. Here we will present the
results of the study carried out by the Euclid Consortium during the Euclid
Definition phase.Comment: 10 pages, 6 figure
One-year outcomes after transcatheter insertion of an interatrial shunt device for the management of heart failure with preserved ejection fraction
Background—Heart failure with preserved ejection fraction has a complex pathophysiology and remains a therapeutic challenge. Elevated left atrial pressure, particularly during exercise, is a key contributor to morbidity and mortality. Preliminary analyses have demonstrated that a novel interatrial septal shunt device that allows shunting to reduce the left atrial pressure provides clinical and hemodynamic benefit at 6 months. Given the chronicity of heart failure with preserved ejection fraction, evidence of longer-term benefit is required.
Methods and Results—Patients (n=64) with left ventricular ejection fraction ≥40%, New York Heart Association class II–IV, elevated pulmonary capillary wedge pressure (≥15 mm Hg at rest or ≥25 mm Hg during supine bicycle exercise) participated in the open-label study of the interatrial septal shunt device. One year after interatrial septal shunt device implantation, there were sustained improvements in New York Heart Association class (P<0.001), quality of life (Minnesota Living with Heart Failure score, P<0.001), and 6-minute walk distance (P<0.01). Echocardiography showed a small, stable reduction in left ventricular end-diastolic volume index (P<0.001), with a concomitant small stable increase in the right ventricular end-diastolic volume index (P<0.001). Invasive hemodynamic studies performed in a subset of patients demonstrated a sustained reduction in the workload corrected exercise pulmonary capillary wedge pressure (P<0.01). Survival at 1 year was 95%, and there was no evidence of device-related complications.
Conclusions—These results provide evidence of safety and sustained clinical benefit in heart failure with preserved ejection fraction patients 1 year after interatrial septal shunt device implantation. Randomized, blinded studies are underway to confirm these observations
- …