22,141 research outputs found

    Collocating Interface Objects: Zooming into Maps

    Get PDF
    May, Dean and Barnard [10] used a theoretically based model to argue that objects in a wide range of interfaces should be collocated following screen changes such as a zoom-in to detail. Many existing online maps do not follow this principle, but move a clicked point to the centre of the subsequent display, leaving the user looking at an unrelated location. This paper presents three experiments showing that collocating the point clicked on a map so that the detailed location appears in the place previously occupied by the overview location makes the map easier to use, reducing eye movements and interaction duration. We discuss the benefit of basing design principles on theoretical models so that they can be applied to novel situations, and so designers can infer when to use and not use them

    Variable-frequency-controlled coupling in charge qubit circuits: Effects of microwave field on qubit-state readout

    Get PDF
    To implement quantum information processing, microwave fields are often used to manipulate superconuducting qubits. We study how the coupling between superconducting charge qubits can be controlled by variable-frequency magnetic fields. We also study the effects of the microwave fields on the readout of the charge-qubit states. The measurement of the charge-qubit states can be used to demonstrate the statistical properties of photons.Comment: 7 pages, 3 figure

    A qubit strongly-coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation

    Full text link
    We investigate the spontaneous emission spectrum of a qubit in a lossy resonant cavity. We use neither the rotating-wave approximation nor the Markov approximation. The qubit-cavity coupling strength is varied from weak, to strong, even to lower bound of the ultra-strong. For the weak-coupling case, the spontaneous emission spectrum of the qubit is a single peak, with its location depending on the spectral density of the qubit environment. Increasing the qubit-cavity coupling increases the asymmetry (the positions about the qubit energy spacing and heights of the two peaks) of the two spontaneous emission peaks (which are related to the vacuum Rabi splitting) more. Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry of the splitting peaks becomes larger, when the qubit-cavity coupling strength is increased. However, for a qubit in an Ohmic bath, the height asymmetry of the spectral peaks is inverted from the same case of the low-frequency bath, when the qubit is strongly coupled to the cavity. Increasing the qubit-cavity coupling to the lower bound of the ultra-strong regime, the height asymmetry of the left and right peak heights are inverted, which is consistent with the same case of low-frequency bath, only relatively weak. Therefore, our results explicitly show how the height asymmetry in the spontaneous emission spectrum peaks depends not only on the qubit-cavity coupling, but also on the type of intrinsic noise experienced by the qubit.Comment: 10pages, 5 figure

    Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit

    Full text link
    We analyze the optical selection rules of the microwave-assisted transitions in a flux qubit superconducting quantum circuit (SQC). We show that the parities of the states relevant to the superconducting phase in the SQC are well-defined when the external magnetic flux Φe=Φ0/2\Phi_{e}=\Phi_{0}/2, then the selection rules are same as the ones for the electric-dipole transitions in usual atoms. When Φe≠Φ0/2\Phi_{e}\neq \Phi_{0}/2, the symmetry of the potential of the artificial "atom'' is broken, a so-called Δ\Delta-type "cyclic" three-level atom is formed, where one- and two-photon processes can coexist. We study how the population of these three states can be selectively transferred by adiabatically controlling the electromagnetic field pulses. Different from Λ\Lambda-type atoms, the adiabatic population transfer in our three-level Δ\Delta-atom can be controlled not only by the amplitudes but also by the phases of the pulses

    Creating maximally entangled atomic states in a Bose-Einstein condensate

    Full text link
    We propose a protocol to create maximally entangled pairs, triplets, quartiles, and other clusters of Bose condensed atoms starting from a condensate in the Mott insulator state. The essential element is to drive single atom Raman transitions using laser pulses. Our scheme is simple, efficient, and can be readily applied to the recent experimental system as reported by Greiner {\it et al.} [ Nature {\bf 413}, 44 (2002)].Comment: 4 pages, 2 figures. revised version as to be publishe

    Bose-stimulated scattering off a cold atom trap

    Get PDF
    The angle and temperature dependence of the photon scattering rate for Bose-stimulated atom recoil transitions between occupied states is compared to diffraction and incoherent Rayleigh scattering near the Bose-Einstein transition for an optically thin trap in the limit of large particle number, N. Each of these processes has a range of angles and temperatures for which it dominates over the others by a divergent factor as N->oo.Comment: 18 pages (REVTeX), no figure

    Tunnelling of condensate magnetization in a double-well potential

    Full text link
    We study quantum dynamical properties of a spin-1 atomic Bose-Einstein condensate in a double-well potential. Adopting a mean field theory and single spatial mode approximation, we characterize our model system as two coupled spins. For certain initial states, we find full magnetization oscillations between wells not accompanied by mass (or atom numbers) exchange. We identify dynamic regimes of collective spin variables arising from nonlinear self-interactions that are different from the usual Josephson oscillations. We also discuss magnetization beats and incomplete oscillations of collective spin variables other than the magnetization. Our study points to an alternative approach to observe coherent tunnelling of a condensate through a (spatial) potential barrier.Comment: 5 pages, 5 figures, submitted to Physical Review
    • …
    corecore