3,442 research outputs found

    Disorder effect in low dimensional superconductors

    Full text link
    The quasiparticle density of states (DOS), the energy gap, the superfluid density ρs\rho_s, and the localization effect in the s- and d-wave superconductors with non-magnetic impurity in two dimensions (2D) are studied numerically. For strong (unitary) scatters, we find that it is the range of the scattering potential rather than the symmetry of the superconducting pairing which is more important in explaining the impurity dependences of the specific heat and the superconducting transition temperature in Zn doped YBCO. The localization length is longer in the d-wave superconducting state than in the normal state, even in the vicinity of the Fermi energy.Comment: 2 pages, uuencoded compressed postscript file, IRC-940610

    GALEX ultraviolet observations of stellar variability in the Hyades and Pleiades clusters

    Full text link
    We present GALEX near ultraviolet (NUV:1750 - 2750A) and far ultraviolet (FUV: 1350 - 1750A) imaging observations of two 1.2 degree diameter fields in the Hyades and Pleiades open clusters in order to detect possible UV variability of the member stars. We have performed a detailed software search for short-term UV flux variability during these observations of the approx 400 sources detected in each of the Hyades and Pleiades fields to identify flare-like (dMe) stellar objects. This search resulted in the detection of 16 UV variable sources, of which 13 can be directly associated with probable M-type stars. The other UV sources are G-type stars and one newly discovered RR Lyrae star, USNOB1.0 1069-0046050, of period 0.624 day and distance 4.5-7.0 kpc. Light curves of photon flux versus time are shown for 7 flare events recorded on six probable dMe stars. UV energies for these flares span the range 2E27 to 5E29 erg, with a corresponding NUV variability change of 1.82 mag. Only one of these flare events (on the star Cl* Melotte 25 LH129) can definitely be associated with an origin on a member the Hyades cluster itself. Finally, many of our M-type candidates show long periods of enhanced UV activity but without the associated rapid increase in flux that is normally associated with a flare event. However, the total UV energy output during such periods of increased activity is greater than that of many short-term UV flares. These intervals of enhanced low-level UV activity concur with the idea that, even in quiescence, the UV emission from dMe stars may be related to a superposition of many small flare events possessing a wide range of energies.Comment: PASP Submitte

    Calculating the inherent visual structure of a landscape (inherent viewshed) using high-throughput computing

    Get PDF
    This paper describes a method of calculating the inherent visibility at all locations in a landscape (‘total viewshed’) by making use of redundant computer cycles. This approach uses a simplified viewshed program that is suitable for use within a distributed environment, in this case managed by the Condor system. Distributing the calculation in this way reduced the calculation time of our example from an estimated 34 days to slightly over 25 hours using a cluster of 43 workstations. Finally, we discuss the example ‘total viewshed’ raster for the Avebury region, and briefly highlight some of its implications

    Reconnaissance of the TRAPPIST-1 exoplanet system in the Lyman-α\alpha line

    Full text link
    The TRAPPIST-1 system offers the opportunity to characterize terrestrial, potentially habitable planets orbiting a nearby ultracool dwarf star. We performed a four-orbit reconnaissance with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope to study the stellar emission at Lyman-α\alpha, to assess the presence of hydrogen exospheres around the two inner planets, and to determine their UV irradiation. We detect the Lyman-α\alpha line of TRAPPIST-1, making it the coldest exoplanet host star for which this line has been measured. We reconstruct the intrinsic line profile, showing that it lacks broad wings and is much fainter than expected from the stellar X-ray emission. TRAPPIST-1 has a similar X-ray emission as Proxima Cen but a much lower Ly-α\alpha emission. This suggests that TRAPPIST-1 chromosphere is only moderately active compared to its transition region and corona. We estimated the atmospheric mass loss rates for all planets, and found that despite a moderate extreme UV emission the total XUV irradiation could be strong enough to strip the atmospheres of the inner planets in a few billions years. We detect marginal flux decreases at the times of TRAPPIST-1b and c transits, which might originate from stellar activity, but could also hint at the presence of extended hydrogen exospheres. Understanding the origin of these Lyman-α\alpha variations will be crucial in assessing the atmospheric stability and potential habitability of the TRAPPIST-1 planets.Comment: Published in A&A as a Letter to the Edito

    Physical properties and radius variations in the HAT-P-5 planetary system from simultaneous four-colour photometry

    Get PDF
    The radii of giant planets, as measured from transit observations, may vary with wavelength due to Rayleigh scattering or variations in opacity. Such an effect is predicted to be large enough to detect using ground-based observations at multiple wavelengths. We present defocussed photometry of a transit in the HAT-P-5 system, obtained simultaneously through Stromgren u, Gunn g and r, and Johnson I filters. Two more transit events were observed through a Gunn r filter. We detect a substantially larger planetary radius in u, but the effect is greater than predicted using theoretical model atmospheres of gaseous planets. This phenomenon is most likely to be due to systematic errors present in the u-band photometry, stemming from variations in the transparency of Earth's atmosphere at these short wavelengths. We use our data to calculate an improved orbital ephemeris and to refine the measured physical properties of the system. The planet HAT-P-5b has a mass of 1.06 +/- 0.11 +/- 0.01 Mjup and a radius of 1.252 +/- 0.042 +/- 0.008 Rjup (statistical and systematic errors respectively), making it slightly larger than expected according to standard models of coreless gas-giant planets. Its equilibrium temperature of 1517 +/- 29 K is within 60K of that of the extensively-studied planet HD 209458b.Comment: Version 2 corrects the accidental omission of one author in the arXiv metadata. Accepted for publication in MNRAS. 9 pages, 4 figures, 7 tables. The properties of HAT-P-5 have been added to the Transiting Extrasolar Planet Catalogue at http://www.astro.keele.ac.uk/~jkt/tepcat
    corecore