439 research outputs found
Effect of selection on ancestry: an exactly soluble case and its phenomenological generalization
We consider a family of models describing the evolution under selection of a
population whose dynamics can be related to the propagation of noisy traveling
waves. For one particular model, that we shall call the exponential model, the
properties of the traveling wave front can be calculated exactly, as well as
the statistics of the genealogy of the population. One striking result is that,
for this particular model, the genealogical trees have the same statistics as
the trees of replicas in the Parisi mean-field theory of spin glasses. We also
find that in the exponential model, the coalescence times along these trees
grow like the logarithm of the population size. A phenomenological picture of
the propagation of wave fronts that we introduced in a previous work, as well
as our numerical data, suggest that these statistics remain valid for a larger
class of models, while the coalescence times grow like the cube of the
logarithm of the population size.Comment: 26 page
The Time Machine: A Simulation Approach for Stochastic Trees
In the following paper we consider a simulation technique for stochastic
trees. One of the most important areas in computational genetics is the
calculation and subsequent maximization of the likelihood function associated
to such models. This typically consists of using importance sampling (IS) and
sequential Monte Carlo (SMC) techniques. The approach proceeds by simulating
the tree, backward in time from observed data, to a most recent common ancestor
(MRCA). However, in many cases, the computational time and variance of
estimators are often too high to make standard approaches useful. In this paper
we propose to stop the simulation, subsequently yielding biased estimates of
the likelihood surface. The bias is investigated from a theoretical point of
view. Results from simulation studies are also given to investigate the balance
between loss of accuracy, saving in computing time and variance reduction.Comment: 22 Pages, 5 Figure
Evolution of the most recent common ancestor of a population with no selection
We consider the evolution of a population of fixed size with no selection.
The number of generations to reach the first common ancestor evolves in
time. This evolution can be described by a simple Markov process which allows
one to calculate several characteristics of the time dependence of . We also
study how is correlated to the genetic diversity.Comment: 21 pages, 10 figures, uses RevTex4 and feynmf.sty Corrections :
introduction and conclusion rewritten, references adde
Noisy traveling waves: effect of selection on genealogies
For a family of models of evolving population under selection, which can be
described by noisy traveling wave equations, the coalescence times along the
genealogical tree scale like , where is the size of the
population, in contrast with neutral models for which they scale like . An
argument relating this time scale to the diffusion constant of the noisy
traveling wave leads to a prediction for which agrees with our
simulations. An exactly soluble case gives trees with statistics identical to
those predicted for mean-field spin glasses in Parisi's theory.Comment: 4 pages, 2 figures New version includes more numerical simulations
and some rewriting of the text presenting our result
Does the Red Queen reign in the kingdom of digital organisms?
In competition experiments between two RNA viruses of equal or almost equal
fitness, often both strains gain in fitness before one eventually excludes the
other. This observation has been linked to the Red Queen effect, which
describes a situation in which organisms have to constantly adapt just to keep
their status quo. I carried out experiments with digital organisms
(self-replicating computer programs) in order to clarify how the competing
strains' location in fitness space influences the Red-Queen effect. I found
that gains in fitness during competition were prevalent for organisms that were
taken from the base of a fitness peak, but absent or rare for organisms that
were taken from the top of a peak or from a considerable distance away from the
nearest peak. In the latter two cases, either neutral drift and loss of the
fittest mutants or the waiting time to the first beneficial mutation were more
important factors. Moreover, I found that the Red-Queen dynamic in general led
to faster exclusion than the other two mechanisms.Comment: 10 pages, 5 eps figure
Non-linear regression models for Approximate Bayesian Computation
Approximate Bayesian inference on the basis of summary statistics is
well-suited to complex problems for which the likelihood is either
mathematically or computationally intractable. However the methods that use
rejection suffer from the curse of dimensionality when the number of summary
statistics is increased. Here we propose a machine-learning approach to the
estimation of the posterior density by introducing two innovations. The new
method fits a nonlinear conditional heteroscedastic regression of the parameter
on the summary statistics, and then adaptively improves estimation using
importance sampling. The new algorithm is compared to the state-of-the-art
approximate Bayesian methods, and achieves considerable reduction of the
computational burden in two examples of inference in statistical genetics and
in a queueing model.Comment: 4 figures; version 3 minor changes; to appear in Statistics and
Computin
- …