3,179 research outputs found

    COMMENTARY The Alloplastic Nature of Pathological Gambling

    Get PDF

    Temperature dependence of the energy dissipation in dynamic force microscopy

    Full text link
    The dissipation of energy in dynamic force microscopy is usually described in terms of an adhesion hysteresis mechanism. This mechanism should become less efficient with increasing temperature. To verify this prediction we have measured topography and dissipation data with dynamic force microscopy in the temperature range from 100 K up to 300 K. We used 3,4,9,10-perylenetetracarboxylic-dianhydride (PTCDA) grown on KBr(001), both materials exhibiting a strong dissipation signal at large frequency shifts. At room temperature, the energy dissipated into the sample (or tip) is 1.9 eV/cycle for PTCDA and 2.7 eV/cycle for KBr, respectively, and is in good agreement with an adhesion hysteresis mechanism. The energy dissipation over the PTCDA surface decreases with increasing temperature yielding a negative temperature coefficient. For the KBr substrate, we find the opposite behaviour: an increase of dissipated energy with increasing temperature. While the negative temperature coefficient in case of PTCDA agrees rather well with the adhesion hysteresis model, the positive slope found for KBr points to a hitherto unknown dissipation mechanism

    Surveying the Inner Halo of the Galaxy with 2MASS-Selected Horizontal Branch Candidates

    Full text link
    We use 2MASS photometry to select blue horizontal branch (BHB) candidates covering the sky |b|>15 deg. A 12.5<J<15.5 sample of BHB stars traces the thick disk and inner halo to d<9 kpc, with a density comparable to that of M giant stars. We base our sample selection strategy on the Century Survey Galactic Halo Project, a survey that provides a complete, spectroscopically-identified sample of blue stars to a similar depth as the 2MASS catalog. We show that a -0.20<(J-H)_0<0.10, -0.10<(H-K)_0<0.10 color-selected sample of stars is 65% complete for BHB stars, and is composed of 47% BHB stars. We apply this photometric selection to the full 2MASS catalog, and see no spatial overdensities of BHB candidates at high Galactic latitude |b|>50 deg. We insert simulated star streams into the data and conclude that the high Galactic latitude BHB candidates are consistent with having no ~5 deg wide star stream with density greater than 0.33 objects deg^-2 at the 95% confidence level. The absence of structure suggests there have been no major accretion events in the inner halo in the last few Gyr. However, at low Galactic latitudes a two-point angular correlation analysis reveals structure on angular scales <1 deg. This structure is apparently associated with stars in the thick disk, and has a physical scale of 10-100 pc. Interestingly, such structures are expected by cosmological simulations that predict the majority of the thick disk may arise from accretion and disruption of satellite mergers.Comment: 11 pages, including figures. Accepted by AJ with minor revision

    VETA x ray data acquisition and control system

    Get PDF
    We describe the X-ray Data Acquisition and Control System (XDACS) used together with the X-ray Detection System (XDS) to characterize the x-ray image during testing of the AXAF P1/H1 mirror pair at the MSFC X-ray Calibration Facility. A variety of x-ray data were acquired, analyzed, and archived during the testing including: mirror alignment, encircled energy, effective area, point spread function, system housekeeping, and proportional counter window uniformity data. The system architecture will be presented with emphasis placed on key features that include a layered UNIX tool approach, dedicated subsystem controllers, real-time X-window displays, flexibility in combining tools, network connectivity, and system extensibility. The VETA test data archive are also described

    WANL nuclear excursion analysis program

    Get PDF

    Testing the Principle of Equivalence by Solar Neutrinos

    Full text link
    We discuss the possibility of testing the principle of equivalence with solar neutrinos. If there exists a violation of the equivalence principle quarks and leptons with different flavors may not universally couple with gravity. The method we discuss employs a quantum mechanical phenomenon of neutrino oscillation to probe into the non-universality of the gravitational couplings of neutrinos. We develop an appropriate formalism to deal with neutrino propagation under the weak gravitational fields of the sun in the presence of the flavor mixing. We point out that solar neutrino observation by the next generation water Cherenkov detectors can improve the existing bound on violation of the equivalence principle by 3-4 orders of magnitude if the nonadiabatic Mikheyev-Smirnov-Wolfenstein mechanism is the solution to the solar neutrino problem.Comment: Latex, 17 pages + 6 uuencoded postscript figures, KEK-TH-396, TMUP-HEL-9402 (unnecessary one reference was removed
    corecore