1 research outputs found
Multiscale theory of turbulence in wavelet representation
We present a multiscale description of hydrodynamic turbulence in
incompressible fluid based on a continuous wavelet transform (CWT) and a
stochastic hydrodynamics formalism. Defining the stirring random force by the
correlation function of its wavelet components, we achieve the cancellation of
loop divergences in the stochastic perturbation expansion. An extra
contribution to the energy transfer from large to smaller scales is considered.
It is shown that the Kolmogorov hypotheses are naturally reformulated in
multiscale formalism. The multiscale perturbation theory and statistical
closures based on the wavelet decomposition are constructed.Comment: LaTeX, 27 pages, 3 eps figure