3,387 research outputs found
Numerical Contractor Renormalization Method for Quantum Spin Models
We demonstrate the utility of the numerical Contractor Renormalization (CORE)
method for quantum spin systems by studying one and two dimensional model
cases. Our approach consists of two steps: (i) building an effective
Hamiltonian with longer ranged interactions using the CORE algorithm and (ii)
solving this new model numerically on finite clusters by exact diagonalization.
This approach, giving complementary information to analytical treatments of the
CORE Hamiltonian, can be used as a semi-quantitative numerical method. For
ladder type geometries, we explicitely check the accuracy of the effective
models by increasing the range of the effective interactions. In two dimensions
we consider the plaquette lattice and the kagome lattice as non-trivial test
cases for the numerical CORE method. On the plaquette lattice we have an
excellent description of the system in both the disordered and the ordered
phases, thereby showing that the CORE method is able to resolve quantum phase
transitions. On the kagome lattice we find that the previously proposed twofold
degenerate S=1/2 basis can account for a large number of phenomena of the spin
1/2 kagome system. For spin 3/2 however this basis does not seem to be
sufficient anymore. In general we are able to simulate system sizes which
correspond to an 8x8 lattice for the plaquette lattice or a 48-site kagome
lattice, which are beyond the possibilities of a standard exact diagonalization
approach.Comment: 15 page
Valence Bond Entanglement Entropy
We introduce for SU(2) quantum spin systems the Valence Bond Entanglement
Entropy as a counting of valence bond spin singlets shared by two subsystems.
For a large class of antiferromagnetic systems, it can be calculated in all
dimensions with Quantum Monte Carlo simulations in the valence bond basis. We
show numerically that this quantity displays all features of the von Neumann
entanglement entropy for several one-dimensional systems. For two-dimensional
Heisenberg models, we find a strict area law for a Valence Bond Solid state and
multiplicative logarithmic corrections for the Neel phase.Comment: 4 pages, 3 figures, v2: small corrections, published versio
Rigidity and intermediate phases in glasses driven by speciation
The rigid to floppy transitions and the associated intermediate phase in
glasses are studied in the case where the local structure is not fully
determined from the macroscopic concentration. The approach uses size
increasing cluster approximations and constraint counting algorithms. It is
shown that the location and the width of the intermediate phase and the
corresponding structural, mechanical and energetical properties of the network
depend crucially on the way local structures are selected at a given
concentration. The broadening of the intermediate phase is obtained for
networks combining a large amount of flexible local structural units and a high
rate of medium range order.Comment: 4 pages, 4 figure
Participant Satisfaction With the Mission Continues Fellowship Program for Post 9/11 Disabled Veterans
Participant Satisfaction With the Mission Continues Fellowship Program for Post 9/11 Disabled Veteran
Reexamining Participant Satisfaction With the Mission Continues Fellowship Program for Post-9/11 Veterans
Reexamining Participant Satisfaction With the Mission Continues Fellowship Program for Post-9/11 Veteran
Spin States Protected from Intrinsic Electron-Phonon-Coupling Reaching 100 ns Lifetime at Room Temperature in MoSe
We present time-resolved Kerr rotation measurements, showing spin lifetimes
of over 100 ns at room temperature in monolayer MoSe. These long lifetimes
are accompanied by an intriguing temperature dependence of the Kerr amplitude,
which increases with temperature up to 50 K and then abruptly switches sign.
Using ab initio simulations we explain the latter behavior in terms of the
intrinsic electron-phonon coupling and the activation of transitions to
secondary valleys. The phonon-assisted scattering of the photo-excited
electron-hole pairs prepares a valley spin polarization within the first few ps
after laser excitation. The sign of the total valley magnetization, and thus
the Kerr amplitude, switches as a function of temperature, as conduction and
valence band states exhibit different phonon-mediated inter-valley scattering
rates. However, the electron-phonon scattering on the ps time scale does not
provide an explanation for the long spin lifetimes. Hence, we deduce that the
initial spin polarization must be transferred into spin states which are
protected from the intrinsic electron-phonon coupling, and are most likely
resident charge carriers which are not part of the itinerant valence or
conduction band states.Comment: 18 pages, 17 figure
Asymptotic description of solutions of the exterior Navier Stokes problem in a half space
We consider the problem of a body moving within an incompressible fluid at
constant speed parallel to a wall, in an otherwise unbounded domain. This
situation is modeled by the incompressible Navier-Stokes equations in an
exterior domain in a half space, with appropriate boundary conditions on the
wall, the body, and at infinity. We focus on the case where the size of the
body is small. We prove in a very general setup that the solution of this
problem is unique and we compute a sharp decay rate of the solution far from
the moving body and the wall
- …