3,387 research outputs found

    Numerical Contractor Renormalization Method for Quantum Spin Models

    Get PDF
    We demonstrate the utility of the numerical Contractor Renormalization (CORE) method for quantum spin systems by studying one and two dimensional model cases. Our approach consists of two steps: (i) building an effective Hamiltonian with longer ranged interactions using the CORE algorithm and (ii) solving this new model numerically on finite clusters by exact diagonalization. This approach, giving complementary information to analytical treatments of the CORE Hamiltonian, can be used as a semi-quantitative numerical method. For ladder type geometries, we explicitely check the accuracy of the effective models by increasing the range of the effective interactions. In two dimensions we consider the plaquette lattice and the kagome lattice as non-trivial test cases for the numerical CORE method. On the plaquette lattice we have an excellent description of the system in both the disordered and the ordered phases, thereby showing that the CORE method is able to resolve quantum phase transitions. On the kagome lattice we find that the previously proposed twofold degenerate S=1/2 basis can account for a large number of phenomena of the spin 1/2 kagome system. For spin 3/2 however this basis does not seem to be sufficient anymore. In general we are able to simulate system sizes which correspond to an 8x8 lattice for the plaquette lattice or a 48-site kagome lattice, which are beyond the possibilities of a standard exact diagonalization approach.Comment: 15 page

    Valence Bond Entanglement Entropy

    Full text link
    We introduce for SU(2) quantum spin systems the Valence Bond Entanglement Entropy as a counting of valence bond spin singlets shared by two subsystems. For a large class of antiferromagnetic systems, it can be calculated in all dimensions with Quantum Monte Carlo simulations in the valence bond basis. We show numerically that this quantity displays all features of the von Neumann entanglement entropy for several one-dimensional systems. For two-dimensional Heisenberg models, we find a strict area law for a Valence Bond Solid state and multiplicative logarithmic corrections for the Neel phase.Comment: 4 pages, 3 figures, v2: small corrections, published versio

    Rigidity and intermediate phases in glasses driven by speciation

    Full text link
    The rigid to floppy transitions and the associated intermediate phase in glasses are studied in the case where the local structure is not fully determined from the macroscopic concentration. The approach uses size increasing cluster approximations and constraint counting algorithms. It is shown that the location and the width of the intermediate phase and the corresponding structural, mechanical and energetical properties of the network depend crucially on the way local structures are selected at a given concentration. The broadening of the intermediate phase is obtained for networks combining a large amount of flexible local structural units and a high rate of medium range order.Comment: 4 pages, 4 figure

    Participant Satisfaction With the Mission Continues Fellowship Program for Post 9/11 Disabled Veterans

    Get PDF
    Participant Satisfaction With the Mission Continues Fellowship Program for Post 9/11 Disabled Veteran

    Reexamining Participant Satisfaction With the Mission Continues Fellowship Program for Post-9/11 Veterans

    Get PDF
    Reexamining Participant Satisfaction With the Mission Continues Fellowship Program for Post-9/11 Veteran

    Spin States Protected from Intrinsic Electron-Phonon-Coupling Reaching 100 ns Lifetime at Room Temperature in MoSe2_2

    Get PDF
    We present time-resolved Kerr rotation measurements, showing spin lifetimes of over 100 ns at room temperature in monolayer MoSe2_2. These long lifetimes are accompanied by an intriguing temperature dependence of the Kerr amplitude, which increases with temperature up to 50 K and then abruptly switches sign. Using ab initio simulations we explain the latter behavior in terms of the intrinsic electron-phonon coupling and the activation of transitions to secondary valleys. The phonon-assisted scattering of the photo-excited electron-hole pairs prepares a valley spin polarization within the first few ps after laser excitation. The sign of the total valley magnetization, and thus the Kerr amplitude, switches as a function of temperature, as conduction and valence band states exhibit different phonon-mediated inter-valley scattering rates. However, the electron-phonon scattering on the ps time scale does not provide an explanation for the long spin lifetimes. Hence, we deduce that the initial spin polarization must be transferred into spin states which are protected from the intrinsic electron-phonon coupling, and are most likely resident charge carriers which are not part of the itinerant valence or conduction band states.Comment: 18 pages, 17 figure

    Asymptotic description of solutions of the exterior Navier Stokes problem in a half space

    Full text link
    We consider the problem of a body moving within an incompressible fluid at constant speed parallel to a wall, in an otherwise unbounded domain. This situation is modeled by the incompressible Navier-Stokes equations in an exterior domain in a half space, with appropriate boundary conditions on the wall, the body, and at infinity. We focus on the case where the size of the body is small. We prove in a very general setup that the solution of this problem is unique and we compute a sharp decay rate of the solution far from the moving body and the wall
    • …
    corecore