175 research outputs found

    Invariant Categorisation of Polygonal Objects using Multi-resolution Signatures

    Get PDF
    With the increasing use of 3D objects and models, mining of 3D databases is becoming an important issue. However, 3D object recognition is very time consuming because of variations due to position, rotation, size and mesh resolution. A fast categorisation can be used to discard non-similar objects, such that only few objects need to be compared in full detail. We present a simple method for characterising 3D objects with the goal of performing a fast similarity search in a set of polygonal mesh models. The method constructs, for each object, two sets of multi-scale signatures: (a) the progression of deformation due to iterative mesh smoothing and, similarly, (b) the influence of mesh dilation and erosion using a sphere with increasing radius. The signatures are invariant to 3D translation, rotation and scaling, also to mesh resolution because of proper normalisation. The method was validated on a set of 31 complex objects, each object being represented with three mesh resolutions. The results were measured in terms of Euclidian distance for ranking all objects, with an overall average ranking rate of 1.29

    Face segregation and recognition by cortical multi-scale line and edge coding

    Get PDF
    Models of visual perception are based on image representations in cortical area V1 and higher areas which contain many cell layers for feature extraction. Basic simple, complex and end-stopped cells provide input for line, edge and keypoint detection. In this paper we present an improved method for multi-scale line/edge detection based on simple and complex cells. We illustrate the line/edge representation for object reconstruction, and we present models for multi-scale face (object) segregation and recognition that can be embedded into feedforward dorsal and ventral data streams (the “what” and “where” subsystems) with feedback streams from higher areas for obtaining translation, rotation and scale invariance

    Improved line/edge detection and visual reconstruction

    Get PDF
    Lines and edges provide important information for object categorization and recognition. In addition, one brightness model is based on a symbolic interpretation of the cortical multi-scale line/edge representation. In this paper we present an improved scheme for line/edge extraction from simple and complex cells and we illustrate the multi-scale representation. This representation can be used for visual reconstruction, but also for nonphotorealistic rendering. Together with keypoints and a new model of disparity estimation, a 3D wireframe representation of e.g. faces can be obtained in the future

    Arquitectura do córtex visual com aplicações na visão por computador

    Get PDF
    O estudo da visão humana atrai o interesse de muitos cientistas ao longo dos séculos, como por exemplo em 1704 por Newton na visão a cores e 1910 por Helmholtz na óptica fisiológica. No entanto, as primeiras contribuições na visão computacional começaram por volta de 40 anos atrás quando os primeiros computadores apareceram. Por volta de 1980, David Marr estabeleceu as bases para a moderna teoria de visão computacional

    Multi-scale keypoint hierarchy for Focus-of-Attention and object detection

    Get PDF
    Hypercolumns in area V1 contain frequency- and orientation-selective simple and complex cells for line (bar) and edge coding, plus end-stopped cells for key- point (vertex) detection. A single-scale (single-frequency) mathematical model of single and double end-stopped cells on the basis of Gabor filter responses was developed by Heitger et al. (1992 Vision Research 32 963-981). We developed an improved model by stabilising keypoint detection over neighbouring micro- scales

    Multi-scale lines and edges in V1 and beyond: brightness, object categorization and recognition, and consciousness

    Get PDF
    In this paper we present an improved model for line and edge detection in cortical area V1. This model is based on responses of simple and complex cells, and it is multi-scale with no free parameters. We illustrate the use of the multi-scale line/edge representation in different processes: visual reconstruction or brightness perception, automatic scale selection and object segregation. A two-level object categorization scenario is tested in which pre-categorization is based on coarse scales only and final categorization on coarse plus fine scales. We also present a multi-scale object and face recognition model. Processing schemes are discussed in the framework of a complete cortical architecture. The fact that brightness perception and object recognition may be based on the same symbolic image representation is an indication that the entire (visual) cortex is involved in consciousness

    Multi-scale keypoints in V1 and beyond: object segregation, scale selection, saliency maps and face detection

    Get PDF
    End-stopped cells in cortical area V1, which combine outputs of complex cells tuned to different orientations, serve to detect line and edge crossings, singularities and points with large curvature. These cells can be used to construct retinotopic keypoint maps at different spatial scales (level-of-detail). The importance of the multi-scale keypoint representation is studied in this paper. It is shown that this representation provides very important information for object recognition and face detection. Different grouping operators can be used for object segregation and automatic scale selection. Saliency maps for focus-of-attention can be constructed. Such maps can be employed for face detection by grouping facial landmarks at eyes, nose and mouth. Although a face detector can be based on processing within area V1, it is argued that such an operator must be embedded into dorsal and ventral data streams, to and from higher cortical areas, for obtaining translation-, rotation- and scale-invariant detection

    Segmentação de imagem em três dimensões

    Get PDF
    Tese mestr., Engenharia de Sistemas e Computação, 1998, Universidade do Algarv

    Multi-scale keypoints in V1 and face detection

    Get PDF
    End-stopped cells in cortical area V1, which combine out- puts of complex cells tuned to different orientations, serve to detect line and edge crossings (junctions) and points with a large curvature. In this paper we study the importance of the multi-scale keypoint representa- tion, i.e. retinotopic keypoint maps which are tuned to different spatial frequencies (scale or Level-of-Detail). We show that this representation provides important information for Focus-of-Attention (FoA) and object detection. In particular, we show that hierarchically-structured saliency maps for FoA can be obtained, and that combinations over scales in conjunction with spatial symmetries can lead to face detection through grouping operators that deal with keypoints at the eyes, nose and mouth, especially when non-classical receptive field inhibition is employed. Al- though a face detector can be based on feedforward and feedback loops within area V1, such an operator must be embedded into dorsal and ventral data streams to and from higher areas for obtaining translation-, rotation- and scale-invariant face (object) detection
    corecore