204 research outputs found
A Return of the Threshing Ring? Motivations, Benefits and Challenges of Machinery and Labor Sharing Arrangements
Cooperative approaches provide an alternative for small- and medium-sized producers to obtain the efficiencies of large farming operations and remain competitive in an increasingly concentrated agricultural industry. This article examines the motivation and effectiveness of equipment and labor sharing arrangements in the Midwestern US. Case study evidence shows that in addition to cost savings, access to skilled, seasonal labor is an important motivation for farm-level cooperation. Key factors identified for successful cooperative agreements include compatibility of operations and members' willingness to communicate and adapt. Sharing resources is found to improve farm profitability, efficiency and farmers' quality of life.machinery sharing; skilled farm labor; productivity; farm-level cooperations
African-American patients with cancer Talking About Clinical Trials (TACT) with oncologists during consultations: evaluating the efficacy of tailored health messages in a randomised controlled trialâthe TACT study protocol
Introduction Low rates of accrual of African-American (AA) patients with cancer to therapeutic clinical trials (CTs) represent a serious and modifiable racial disparity in healthcare that impedes the development of promising cancer therapies. Suboptimal physicianâpatient consultation communication is a barrier to the accrual of patients with cancer of any race, but communication difficulties are compounded with AA patients. Providing tailored health messages (THM) to AA patients and their physician about CTs has the potential to improve communication, lower barriers to accrual and ameliorate health disparities. Objective (1) Demonstrate the efficacy of THM to increase patient activation as measured by direct observation. (2) Demonstrate the efficacy of THM to improve patient outcomes associated with barriers to AA participation. (3) Explore associations among preconsultation levels of: (A) trust in medical researchers, (B) knowledge and attitudes towards CTs, (C) patient-family member congruence in decision-making, and (D) involvement/information preferences, and group assignment. Methods and analysis First, using established methods, we will develop THM materials. Second, the efficacy of the intervention is determined in a 2 by 2 factorial randomised controlled trial to test the effectiveness of (1) providing 357 AA patients with cancer with THM with 2 different âdepthsâ of tailoring and (2) either providing feedback to oncologists about the patients\u27 trial THM or not. The primary analysis compares patient engaged communication in 4 groups preconsultation and postconsultation. Ethics and dissemination This study was approved by the Virginia Commonwealth University Institutional Review Board. To facilitate use of the THM intervention in diverse settings, we will convene âuser groupsâ at 3 major US cancer centres. To facilitate dissemination, we will post all materials and the implementation guide in publicly available locations
Statistical-mechanical theory of the overall magnetic properties of mesocrystals
The mesocrystal showing both electrorheological and magnetorheological
effects is called electro-magnetorheological (EMR) solids. Prediction of the
overall magnetic properties of the EMR solids is a challenging task due to the
coexistence of the uniaxially anisotropic behavior and structural transition as
well as long-range interaction between the suspended particles. To consider the
uniaxial anisotropy effect, we present an anisotropic Kirkwood-Fr\"{o}hlich
equation for calculating the effective permeabilities by adopting an explicit
characteristic spheroid rather than a characteristic sphere used in the
derivation of the usual Kirkwood-Fr\"{o}hlich equation. Further, by applying an
Ewald-Kornfeld formulation we are able to investigate the effective
permeability by including the structural transition and long-range interaction
explicitly. Our theory can reduce to the usual Kirkwood-Fr\"{o}hlich equation
and Onsager equation naturally. To this end, the numerical simulation shows the
validity of monitoring the structure of EMR solids by detecting their effective
permeabilities.Comment: 14 pages, 1 figur
Dynamics of metallic stripes in cuprates
We study the dynamics of metallic vertical stripes in cuprates within the
three-band Hubbard model based on a recently developed time dependent
Gutzwiller approximation. As doping increases the optical conductivity shows
transfer of spectral weight from the charge transfer band towards i) an
incoherent band centered at 1.3eV, {ii} a Drude peak, mainly due to motion
along the stripe, {iii} a low energy collective mode which softens with doping
and merges with ii} at optimum doping in good agreement with experiment. The
softening is related to the quasidegeneracy between Cu centered and O centered
mean-field stripe solutions close to optimal doping.Comment: 4 pages, 5 figures, corrections to Fig.
Interactions between vaccinia virus and sensitized macrophages in vitro
The action of peritoneal exudate cells (PEC) from normal and vaccinia virus infected mice on infectious vaccinia virus particles was investigatedin vitro. PEC from immune mice showed a significantly higher infectivity titre reduction (virus clearance, VC) than normal cells. This effect could be clearly attributed to the macrophage. Vaccinia virus multiplied in PEC from normal animals while there was no virus propagation in cells from immunized mice. The release of adsorbed or engulfed virus was reduced significantly in PEC from immunized animals. Anti-vaccinia-antibodies seem to activate normal macrophages to increased virus clearance. This stimulating effect was demonstrable only in the IgG fraction of the antiserum.
The activity of macrophages from mice injected three times over a period of 14 days with vaccinia virus could be entirely blocked with anti-mouse-IgG, while PEC from mice injected one time six days previously were not inhibited
Origin of the Pseudogap in High-Temperature Cuprate Superconductors
Cuprate high-temperature superconductors exhibit a pseudogap in the normal
state that decreases monotonically with increasing hole doping and closes at x
\approx 0.19 holes per planar CuO2 while the superconducting doping range is
0.05 < x < 0.27 with optimal Tc at x \approx 0.16. Using ab initio quantum
calculations at the level that leads to accurate band gaps, we found that
four-Cu-site plaquettes are created in the vicinity of dopants. At x \approx
0.05 the plaquettes percolate, so that the Cu dx2y2/O p{\sigma} orbitals inside
the plaquettes now form a band of states along the percolating swath. This
leads to metallic conductivity and below Tc to superconductivity. Plaquettes
disconnected from the percolating swath are found to have degenerate states at
the Fermi level that split and lead to the pseudogap. The pseudogap can be
calculated by simply counting the spatial distribution of isolated plaquettes,
leading to an excellent fit to experiment. This provides strong evidence in
favor of inhomogeneous plaquettes in cuprates.Comment: 24 pages (4 pages main text plus 20 pages supplement
The Antiferromagnetic Band Structure of La2CuO4 Revisited
Using the Becke-3-LYP functional, we have performed band structure
calculations on the high temperature superconductor parent compound, La2CuO4.
Under the restricted spin formalism (rho(alpha) equal to rho(beta)), the
R-B3LYP band structure agrees well with the standard LDA band structure. It is
metallic with a single Cu x2-y2/O p(sigma) band crossing the Fermi level. Under
the unrestricted spin formalism (rho(alpha) not equal to rho(beta)), the UB3LYP
band structure has a spin polarized antiferromagnetic solution with a band gap
of 2.0 eV, agreeing well with experiment. This state is 1.0 eV (per formula
unit) lower than that calculated from the R-B3LYP. The apparent high energy of
the spin restricted state is attributed to an overestimate of on-site Coulomb
repulsion which is corrected in the unrestricted spin calculations. The
stabilization of the total energy with spin polarization arises primarily from
the stabilization of the x2-y2 band, such that the character of the eigenstates
at the top of the valence band in the antiferromagnetic state becomes a strong
mixture of Cu x2-y2/O p(sigma) and Cu z2/O' p(z). Since the Hohenberg-Kohn
theorem requires the spin restricted and spin unrestricted calculations give
exactly the same ground state energy and total density for the exact
functionals, this large disparity in energy reflects the inadequacy of current
functionals for describing the cuprates. This calls into question the use of
band structures based on current restricted spin density functionals (including
LDA) as a basis for single band theories of superconductivity in these
materials.Comment: 13 pages, 8 figures, to appear in Phys. Rev. B, for more information
see http://www.firstprinciples.co
ESR, raman and conductivity studies on fractionated poly(2-methoxyaniline-5-sulfonic acid)
Synthesis methods used to produce poly(2-methoxyaniline-5-sulfonic acid) (PMAS), a water soluble, self-doped conducting polymer, have been shown to form two distinctly different polymer fractions with molecular weights of approximately 2 kDa and 8 -10 kDa. The low molecular weight (LMWT) PMAS fraction is redox inactive and non-conducting while the high molecular weight (HMWT) PMAS is electro-active with electrical conductivities of 0.94 0.05 S cm-1. Previous investigations have illustrated the different photochemical and electrochemical properties of these fractions, but have not correlated these properties with the structural and electronic interactions that drive them. Incomplete purification of the PMAS mixture, typically via bag dialysis, has been shown to result in a mixture of approximately 50:50 HMWT:LMWT PMAS with electrical conductivity significantly lower at approximately 0.10 to 0.26 S cm-1. The difference between the electrical conductivities of these fractions has been investigated by the controlled addition of the non-conducting LMWT PMAS fraction into the HMWT PMAS composite film with the subsequent electronic properties investigated by solid-state ESR and Raman spectroscopies. These studies illustrate strong electronic intereactions of the insulating LMWT PMAS with the emeraldine salt HMWT PMAS to substantially alter the population of the electronic charge carriers in the conducting polymer. ESR studies on these mixtures, when compared to HMWT PMAS, exhibited a lower level of electron spin in the presence of LMWT PMAS indicative of the the formation of low spin bipolarons without a change the oxidation state of the conducting HMWT fraction
Nonadiabatic approach to dimerization gap and optical absorption coefficient of the Su-Schrieffer-Heeger model
An analytical nonadiabatic approach has been developed to study the
dimerization gap and the optical absorption coefficient of the
Su-Schrieffer-Heeger model where the electrons interact with dispersive quantum
phonons. By investigating quantitatively the effects of quantum phonon
fluctuations on the gap order and the optical responses in this system, we show
that the dimerization gap is much more reduced by the quantum lattice
fluctuations than the optical absorption coefficient is. The calculated optical
absorption coefficient and the density of states do not have the
inverse-square-root singularity, but have a peak above the gap edge and there
exist a significant tail below the peak. The peak of optical absorption
spectrum is not directly corresponding to the dimerized gap. Our results of the
optical absorption coefficient agree well with those of the experiments in both
the shape and the peak position of the optical absorption spectrum.Comment: 14 pages, 7 figures. to be published in PR
- âŠ