27 research outputs found

    V605 Aql: The Older Twin of Sakurai's Object

    Get PDF
    New optical spectra have been obtained with VLT/FORS2 of the final helium shell flash (FF) star, V605 Aql, which peaked in brightness in 1919. New models suggest that this star is experiencing a very late thermal pulse. The evolution to a cool luminous giant and then back to a compact hot star takes place in only a few years. V605 Aql, the central star of the Planetary Nebula (PN), A58, has evolved from Teff_{eff}\sim5000 K in 1921 to \sim95,000 K today. There are indications that the new FF star, Sakurai's Object (V4334 Sgr), which appeared in 1996, is evolving along a similar path. The abundances of Sakurai's Object today and V605 Aql 80 years ago mimic the hydrogen deficient R Coronae Borealis (RCB) stars with 98% He and 1% C. The new spectra show that V605 Aql has stellar abundances similar to those seen in Wolf-Rayet [WC] central stars of PNe with ~55% He, and ~40% C. The stellar spectrum of V605 Aql can be seen even though the star is not directly detected. Therefore, we may be seeing the spectrum in light scattered around the edge of a thick torus of dust seen edge-on. In the present state of evolution of V605 Aql, we may be seeing the not too distant future of Sakurai's Object.Comment: 12 pages, 1 figure, ApJ Letters in pres

    Reverberation Mapping of the Kepler-Field AGN KA1858+4850

    Full text link
    KA1858+4850 is a narrow-line Seyfert 1 galaxy at redshift 0.078 and is among the brightest active galaxies monitored by the Kepler mission. We have carried out a reverberation mapping campaign designed to measure the broad-line region size and estimate the mass of the black hole in this galaxy. We obtained 74 epochs of spectroscopic data using the Kast Spectrograph at the Lick 3-m telescope from February to November of 2012, and obtained complementary V-band images from five other ground-based telescopes. We measured the H-beta light curve lag with respect to the V-band continuum light curve using both cross-correlation techniques (CCF) and continuum light curve variability modeling with the JAVELIN method, and found rest-frame lags of lag_CCF = 13.53 (+2.03, -2.32) days and lag_JAVELIN = 13.15 (+1.08, -1.00) days. The H-beta root-mean-square line profile has a width of sigma_line = 770 +/- 49 km/s. Combining these two results and assuming a virial scale factor of f = 5.13, we obtained a virial estimate of M_BH = 8.06 (+1.59, -1.72) x 10^6 M_sun for the mass of the central black hole and an Eddington ratio of L/L_Edd ~ 0.2. We also obtained consistent but slightly shorter emission-line lags with respect to the Kepler light curve. Thanks to the Kepler mission, the light curve of KA1858+4850 has among the highest cadences and signal-to-noise ratios ever measured for an active galactic nucleus; thus, our black hole mass measurement will serve as a reference point for relations between black hole mass and continuum variability characteristics in active galactic nuclei

    The Element Abundances in Bare Planetary Nebula Central Stars and the Shell Burning in AGB Stars

    Full text link
    We review the observed properties of extremely hot hydrogen-deficient post-AGB stars of spectral type [WC] and PG1159. Their H-deficiency is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse, laying bare interior stellar regions which are usually kept hidden below the hydrogen envelope. Thus, the photospheric element abundances of these stars allow to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We summarize the state-of-the-art of stellar evolution models which simulate AGB evolution and the occurrence of a late He-shell flash. We compare predicted element abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found. Future work can contribute to an even more complete picture of the nuclear processes in AGB stars.Comment: Review, accepted for publication in PASP, Febr. 06 issue. For high resolution versions of Figures 1 and 6 see preprint on http://astro.uni-tuebingen.de/publications/paper_05_05.shtm

    The Drosophila melanogaster host model

    Get PDF
    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed

    Type II Supernova Energetics and Comparison of Light Curves to Shock-cooling Models

    Get PDF
    During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of 57 R-band SN II light curves that are well-monitored during their rise, with \gt 5 detections during the first 10 days after discovery, and a well-constrained time of explosion to within 1-3 days. We show that the energy per unit mass (E/M) can be deduced to roughly a factor of five by comparing early-time optical data to the 2011 model of Rabinak & Waxman, while the progenitor radius cannot be determined based on R-band data alone. We find that SN II explosion energies span a range of E/M = (0.2-20) × 1051 erg/(10 {M}☉ ), and have a mean energy per unit mass of =0.85× {10}51 erg/(10 {M}☉ ), corrected for Malmquist bias. Assuming a small spread in progenitor masses, this indicates a large intrinsic diversity in explosion energy. Moreover, E/M is positively correlated with the amount of 56Ni produced in the explosion, as predicted by some recent models of core-collapse SNe. We further present several empirical correlations. The peak magnitude is correlated with the decline rate ({{∆ }}{m}15), the decline rate is weakly correlated with the rise time, and the rise time is not significantly correlated with the peak magnitude. Faster declining SNe are more luminous and have longer rise times. This limits the possible power sources for such events

    V605 Aql: 80 years after the final helium shell flash

    Get PDF
    We have obtained new optical spectra with the ESO/VLT of the final helium flash star, V605 Aql. These spectra indicate that V605 Aql has evolved significantly in only 80 years. It now has a Teff 95,000 K and has abundances similar to those seen in [WC] central stars but not to those of a typical RCB star.2 page(s

    An intradermal inoculation model of scrub typhus in Swiss CD-1 mice demonstrates more rapid dissemination of virulent strains of Orientia tsutsugamushi

    Get PDF
    Scrub typhus is an important endemic disease of the Asia-Pacific region caused by Orientia tsutsugamushi. To develop an effective vaccine to prevent scrub typhus infection, a better understanding of the initial host-pathogen interaction is needed. The objective of this study was to investigate early bacterial dissemination in a CD-1 Swiss outbred mouse model after intradermal injection of O. tsutsugamushi. Three human pathogenic strains of O. tsutsugamushi (Karp, Gilliam, and Woods) were chosen to investigate the early infection characteristics associated with bacterial virulence. Tissue biopsies of the intradermal injection site and draining lymph nodes were examined using histology and immunohistochemistry to characterize bacterial dissemination, and correlated with quantitative real-time PCR for O. tsutsugamushi in blood and tissue from major organs. Soluble adhesion molecules were measured to examine cellular activation in response to infection. No eschar formation was seen at the inoculation site and no clinical disease developed within the 7 day period of observation. However, O. tsutsugamushi was localized at the injection site and in the draining lymph nodes by day 7 post inoculation. Evidence of leukocyte and endothelial activation was present by day 7 with significantly raised levels of sL-selectin, sICAM-1 and sVCAM-1. Infection with the Karp strain was associated with earlier and higher bacterial loads and more extensive dissemination in various tissues than the less pathogenic Gilliam and Woods strains. The bacterial loads of O. tsutsugamushi were highest in the lungs and spleens of mice inoculated with Karp and Gilliam, but not Woods strains. Strains of higher virulence resulted in more rapid systemic infection and dissemination in this model. The CD-1 mouse intradermal inoculation model demonstrates features relevant to early scrub typhus infection in humans, including the development of regional lymphadenopathy, leukocyte activation and distant organ dissemination after low-dose intradermal injection with O. tsutsugamushi
    corecore