33 research outputs found

    Biochemical markers of type II collagen breakdown and synthesis are positioned at specific sites in human osteoarthritic knee cartilage

    Get PDF
    SummaryObjectiveTo investigate whether type II collagen turnover markers used for osteoarthritis (OA) activity evaluation in body fluids can be detected at the level of specific histological features of OA cartilage tissue, as well as how they relate with each other at this level.MethodsAdjacent sections were obtained from full-depth cartilage biopsies from 32 OA knees. Immunohistochemistry was performed for Helix-II and CTX-II, which are type II collagen fragments originating from the triple helix and the telopeptide region, respectively, and believed to reflect distinct breakdown events, as well as for type IIA N propeptide (PIIANP), a biochemical marker reflecting synthesis of type IIA collagen.ResultsHelix-II and CTX-II were detected in areas where collagen damage was reported previously, most frequently around chondrocytes, but also frequently in regions not previously investigated such as the margin area and close to subchondral bone, including vascularization sites and bone–cartilage interface. The latter is CTX-II's prevailing position and shows rarely Helix-II. PIIANP co-localized with Helix-II and CTX-II on a limited number of features, mainly in deep zone cartilage. Overall, our analysis highlights clear patterns of association of the markers with specific histological features, and shows that they spread to these features in an ordered way.ConclusionHelix-II and CTX-II show to some degree differential selectivity for specific features in cartilage tissue. CTX-II detection close to bone may be relevant to the possible role of subchondral bone in OA. The restricted co-localization of breakdown markers and PIIANP suggests that collagen fragments can result only partially from newly synthesized collagen. Our study strengthens the interest for the question whether combining several markers reflecting different regional cartilage contributions or metabolic processes should allow a broader detection of OA activity

    Le manuscrit autographe de Thomas Ă  Kempis et l'imitation de Jesus-Christ.

    No full text
    Thèse de doctorat -- Université catholique de Louvain, 195

    Collagenolytic cysteine proteinases of bone tissue. Cathepsin B, (pro)cathepsin L and a cathepsin L-like 70 kDa proteinase.

    No full text
    The aim of the work was to identify and characterize the cysteine proteinases of bone tissue, as these enzymes appear necessary for bone resorption. Three cysteine-dependent proteolytic activities were separated from a homogenate of mouse calvaria by a fractionation procedure involving (NH4)2SO4 precipitation, gel filtration and ion-exchange chromatography. The first two are typical cathepsins B and L with respect to (1) their reactivity with anti-(cathepsin B) and anti-(cathepsin L) antibodies respectively, (2) their relative rate constants for inhibition by benzyloxycarbonyl-Phe-Phe-CHN2 and L-3-carboxy-trans-2,3-epoxypropionyl-L-leucylamido-(4-guanid ino)butane and (3) their enzymic properties, such as the higher activities of cathepsin L against collagen and gelatin as compared with cathepsin B, and the fact that benzyloxycarbonyl-Arg-Arg 4-methoxy-2-naphthylamide is hydrolysed only by cathepsin B. Cathepsin L was mainly recovered in its precursor form, as indicated by its apparent 40 kDa molecular mass and its relative stability at pH 7.2. The third enzyme is a cathepsin L-like proteinase with an apparent molecular mass of 70 kDa. It is immunoprecipitated by anti-(cathepsin L) antibodies, and appears as the 25 kDa band of mature cathepsin L in Western blots. It further resembles (pro)cathepsin L with regard to its activities against synthetic substrates and proteins such as collagen, and with regard to its response to various inhibitors. However, unlike (pro)cathepsin L, it is eluted as a 70 kDa protein on gel filtration (even in the presence of 1% Brij or 1 M-NaCl), it is stable at pH values as high as 9, and it exhibits stronger affinity for phenyl-Sepharose. It might thus result from a strong complex between mature cathepsin L and another entity that confers stability at alkaline pH and favours hydrophobic interactions. This 70 kDa activity was also detected in mouse muscle and long bones of Ca(2+)-deficient chicks but not in mouse liver, spleen or kidney

    Direct extraction and assay of bone tissue collagenase and its relation to parathyroid-hormone-induced bone resorption.

    No full text
    A method has been developed for the quantitative extraction of collagenase from as little as one 19-day-fetal-mouse calvarium. About 20-40 munits of collagenase are extracted per mg of tissue, all in a latent form that, after proper activation, shows the typical properties of mammalian collagenase. Culturing the calvaria for 2 days with parathyroid hormone (PTH) increases their procollagenase content up to 3-fold and induces bone resorption. Both PTH effects are prevented by cycloheximide, but not by indomethacin. Calcitonin inhibits resorption without affecting the PTH-induced procollagenase synthesis. The role of this synthesis is discussed in relation to the mechanisms of bone resorption

    Inhibition of bone resorption in culture by inhibitors of thiol proteinases.

    No full text
    Leupeptin, antipain, tosyl-lysylchloromethane (Tos-Lys-CH2Cl) and benzyloxy-carbonylphenylalanylalanyldiazomethane (Z-Phe-Ala-CHN2) inhibit reversibly the resorption induced by parathyroid hormone or heparin in cultured mouse bones. Leupeptin and antipain do not affect collagenase production and activity or the enhanced secretion of beta-glucuronidase induced by the bone-resorbing agents. They might thus act by a direct (extracellular?) inhibition of lysosomal thiol proteinases

    Cysteine proteinases and matrix metalloproteinases play distinct roles in the subosteoclastic resorption zone

    No full text
    Digestion of calvarial bone by osteoclasts depends on the activity of cysteine proteinases and matrix metalloproteinases (MMPs). It is unknown, however, whether these enzymes act simultaneously or in a certain (time) sequence. In the present study, this was investigated by culturing mouse calvarial bone explants for various time intervals in the presence or absence of selective low molecular weight inhibitors of cysteine proteinases (E-64, Z-Phe-Tyr(O-t-Bu)CHN2 or CA074[Me]) and MMPs (CI-1, CT1166, or RP59794). The explants were morphometrically analyzed at the electron microscopic level. All proteinase inhibitors induced large areas of nondigested demineralized bone matrix adjacent to the ruffled border of actively resorbing osteoclasts. The appearance of these areas proved to be time dependent. In the presence of the cysteine proteinase inhibitors, a maximal surface area of demineralized bone was seen between 4 and 8 h of culturing, whereas the metalloproteinase inhibitors had their maximal effect at a later time interval (between 16 and 24 h). Because different inhibitors of each of the two classes of proteolytic enzymes had the same effects, our data strongly suggest that cysteine proteinases attack the bone matrix prior to digestion by MMPs. In line with the view that a sequence may exist were differences in the amount of proteoglycans (shown with the selective dye cuprolinic blue) in the subosteoclastic demineralized areas induced by the inhibitors. In the presence of the cysteine proteinase inhibitor, relatively high levels of cuprolinic blue precipitates were found, whereas this was less following inhibition of metalloproteinases. These data suggested that cysteine proteinases are important for digestion of noncollagenous proteins. We propose the following sequence in the digestion of calvarial bone by osteoclasts: after attachment of the cell to the mineralized surface an area with a low pH is created which results in dissolution of the mineral, then cysteine proteinases, active at such a low pH, digest part of the bone matrix, and finally, when the pH has increased somewhat, MMPs exert their activit

    Degradation of collagen in the bone-resorbing compartment underlying the osteoclast involves both cysteine-proteinases and matrix metalloproteinases

    No full text
    The site of action of cysteine-proteinases (CPs) and matrix metalloproteinases (MMPs) in the degradation of bone collagen by osteoclasts was investigated by evaluating the effects of the CP-inhibitor trans-epoxy-succinyl-L-leucylamido (4-guanidino)-butane (E-64) and the MMP-inhibitor N-(3-N-benzyloxycarbonyl amino-1-R-carboxypropyl)-L-leucyl-O-methyl-L-tyrosine N-methylamide (Cl-1) in an in vitro model system of PTH-stimulated mouse calvaria. In the presence of each of the two inhibitors a large area of collagen free of mineral crystallites was seen adjacent to the ruffled border of the osteoclasts. Following a culture period of 24 h this area proved to be about 10 times larger in inhibitor-treated explants than in controls. Moreover the percentage of osteoclasts in close contact with such demineralized bone areas appeared to be significantly higher in inhibitor-treated explants than in control specimens (60% and 5%, respectively). These effects were not apparent when the osteoclastic activity was inhibited with calcitonin. No significant differences were found between the effects of the two inhibitors, E-64 and Cl-1. Our observations indicate that under the influence of inhibitors of MMPs and CPs demineralization of bone by osteoclasts proceeded up to a certain point whereas matrix degradation was strongly inhibited. It is concluded that within the osteoclastic resorption lacuna both CPs and MMPs participate in the degradation of the collagenous bone matri
    corecore