32,863 research outputs found
Anomalies in Universal Intensity Scaling in Ultrarelativistic Laser-Plasma Interactions
Laser light incident on targets at intensities such that the electron
dynamics is ultrarelativistic gives rise to a harmonic power spectrum extending
to high orders and characterized by a relatively slow decay with the harmonic
number m that follows a power law dependence, m^{-p}. Relativistic similarity
theory predicts a universal value for p = 8/3 up to some cut-off m = m*. The
results presented in this work suggest that under conditions in which plasma
effects contribute to the emission spectrum, the extent of this contribution
may invalidate the concept of universal decay. We report a decay with harmonic
number in the ultrarelativistic range characterised by an index 5/3 < p < 7/3,
significantly weaker than that predicted by the similarity model.Comment: 5 pages, 4 figure
Inhibition of Fructose-1,6-bisphosphatase by Aminoimidazole Carboxamide Ribotide Prevents Growth of Salmonella enterica purH Mutants on Glycerol
The enzyme fructose-1,6-bisphosphatase (FBP) is key regulatory point in gluconeogenesis. Mutants of Salmonella enterica lacking purH accumulate 5-amino-4-imidazole carboxamide ribotide (AICAR) and are unable to utilize glycerol as sole carbon and energy sources. The work described here demonstrates this lack of growth is due to inhibition of FBP by AICAR. Mutant alleles of fbp that restore growth on glycerol encode proteins resistant to inhibition by AICAR and the allosteric regulator AMP. This is the first report of biochemical characterization of substitutions causing AMP resistance in a bacterial FBP. Inhibition of FBP activity by AICAR occurs at physiologically relevant concentrations and may represent a form of regulation of gluconeogenic flux in Salmonella enterica
Supersonic quantum communication
When locally exciting a quantum lattice model, the excitation will propagate
through the lattice. The effect is responsible for a wealth of non-equilibrium
phenomena, and has been exploited to transmit quantum information through spin
chains. It is a commonly expressed belief that for local Hamiltonians, any such
propagation happens at a finite "speed of sound". Indeed, the Lieb-Robinson
theorem states that in spin models, all effects caused by a perturbation are
limited to a causal cone defined by a constant speed, up to exponentially small
corrections. In this work we show that for translationally invariant bosonic
models with nearest-neighbor interactions, this belief is incorrect: We prove
that one can encounter excitations which accelerate under the natural dynamics
of the lattice and allow for reliable transmission of information faster than
any finite speed of sound. The effect is only limited by the model's range of
validity (eventually by relativity). It also implies that in non-equilibrium
dynamics of strongly correlated bosonic models far-away regions may become
quickly entangled, suggesting that their simulation may be much harder than
that of spin chains even in the low energy sector.Comment: 4+3 pages, 1 figure, some material added, typographic error fixe
Raman gain against a background of non-thermal ion fluctuations in a plasma
A complex stimulated Raman scattering event against a background of non-thermal ion acoustic waves in an inhomogeneous plasma is described. We obtain analytic forms for the Raman gain due to a five-wave interaction consisting of conventional three-wave Raman scattering followed by the decay of the Raman Langmuir wave into a second Langmuir wave (or a second scattered light wave) and an ion acoustic wave. Very modest levels of ion waves produce a. significant effect on Raman convective gain. A combination of plasma inhomogeneity and suprathermal ion fluctuations may offer a means for the control of Raman gain
Quantum computing with alkaline earth atoms
We present a complete scheme for quantum information processing using the
unique features of alkaline earth atoms. We show how two completely independent
lattices can be formed for the S and P states, with one used as
a storage lattice for qubits encoded on the nuclear spin, and the other as a
transport lattice to move qubits and perform gate operations. We discuss how
the P level can be used for addressing of individual qubits, and how
collisional losses from metastable states can be used to perform gates via a
lossy blockade mechanism.Comment: 4 pages, 3 figures, RevTeX
Population structures in the SARA and SARB reference collections of Salmonella enterica according to MLST, MLEE and microarray hybridization
In the 1980's and 1990's, population genetic analyses based on Multilocus Enzyme Electrophoresis (MLEE) provided an initial overview of the genetic diversity of multiple bacterial species, including Salmonella enterica. The genetic diversity within S. enterica subspecies enterica according to MLEE is represented by the SARA and SARB reference collections, each consisting of 72 isolates, which have been extensively used for comparative analyses. MLEE has subsequently been replaced by Multilocus Sequence Typing (MLST). Our initial MLST results indicated that some strains within the SARB collection differed from their published descriptions. We therefore performed MLST on four versions of the SARB collection from different sources and one collection of SARA, and found that multiple isolates in SARB and SARA differ in serovar from their original description, and other SARB isolates differed between different sources. Comparisons with a global MLST database allowed a plausible reconstruction of the serovars of the original collection. MLEE, MLST and microarrays were largely concordant at recognizing closely related strains. MLST was particularly effective at recognizing discrete population genetic groupings while the two other methods provided hints of higher order relationships. However, quantitative pair-wise phylogenetic distances differed considerably between all three methods. Our results provide a translation dictionary from MLEE to MLST for the extant SARA and SARB collections which can facilitate genomic comparisons based on archival insights from MLEE
Post Big Bang Processing of the Primordial Elements
We explore the Gnedin-Ostriker suggestion that a post-Big-Bang
photodissociation process may modify the primordial abundances of the light
elements. We consider several specific models and discuss the general features
that are necessary (but not necessarily sufficient) to make the model work. We
find that with any significant processing, the final D and He abundances,
which are independent of their initial standard big bang nucleosynthesis (SBBN)
values, rise quickly to a level several orders of magnitude above the
observationally inferred primordial values. Solutions for specific models show
that the only initial abundances that can be photoprocessed into agreement with
observations are those that undergo virtually no processing and are already in
agreement with observation. Thus it is unlikely that this model can work for
any non-trivial case unless an artificial density and/or photon distribution is
invoked.Comment: 12 page Latex file (AASTEX style). Tarred, gzipped, and uuencoded
postscript files of seven figures. Also available (with ps file of paper) at
ftp://www-physics.mps.ohio-state.edu/pub/nucex/phot
- …