561 research outputs found

    Dynamics of poroelastic filaments

    Full text link
    We investigate the stability and geometrically non-linear dynamics of slender rods made of a linear isotropic poroelastic material. Dimensional reduction leads to the evolution equation for the shape of the poroelastica where, in addition to the usual terms for the bending of an elastic rod, we find a term that arises from fluid-solid interaction. Using the poroelastica equation as a starting point, we consider the load controlled and displacement controlled planar buckling of a slender rod, as well as the closely related instabilities of a rod subject to twisting moments and compression when embedded in an elastic medium. This work has applications to the active and passive mechanics of thin filaments and sheets made from gels, plant organs such as stems, roots and leaves, sponges, cartilage layers and bones.Comment: 34 pages, 13 figures, to appear in the Proceeding of the Royal Societ

    Red blood cells and other non-spherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition

    Full text link
    We consider the motion of red blood cells and other non-spherical microcapsules dilutely suspended in a simple shear flow. Our analysis indicates that depending on the viscosity, membrane elasticity, geometry and shear rate, the particle exhibits either tumbling, tank-treading of the membrane about the viscous interior with periodic oscillations of the orientation angle, or intermittent behavior in which the two modes occur alternately. For red blood cells, we compute the complete phase diagram and identify a novel tank-treading-to-tumbling transition at low shear rates. Observations of such motions coupled with our theoretical framework may provide a sensitive means of assessing capsule properties.Comment: 11 pages, 4 figure

    Cell Size Control in Yeast

    Get PDF
    Cell size is an important adaptive trait that influences nearly all aspects of cellular physiology. Despite extensive characterization of the cell-cycle regulatory network, the molecular mechanisms coupling cell growth to division, and thereby controlling cell size, have remained elusive. Recent work in yeast has reinvigorated the size control field and suggested provocative mechanisms for the distinct functions of setting and sensing cell size. Further examination of size-sensing models based on spatial gradients and molecular titration, coupled with elucidation of the pathways responsible for nutrient-modulated target size, may reveal the fundamental principles of eukaryotic cell size control

    Soft lubrication: the elastohydrodynamics of non-conforming and conforming contacts

    Full text link
    We study the lubrication of fluid-immersed soft interfaces and show that elastic deformation couples tangential and normal forces and thus generates lift. We consider materials that deform easily, due to either geometry (e.g. a shell) or constitutive properties (e.g. a gel or a rubber), so that the effects of pressure and temperature on the fluid properties may be neglected. Four different system geometries are considered: a rigid cylinder moving parallel to a soft layer coating a rigid substrate; a soft cylinder moving parallel to a rigid substrate; a cylindrical shell moving parallel to a rigid substrate; and finally a cylindrical conforming journal bearing coated with a thin soft layer. In addition, for the particular case of a soft layer coating a rigid substrate we consider both elastic and poroelastic material responses. For all these cases we find the same generic behavior: there is an optimal combination of geometric and material parameters that maximizes the dimensionless normal force as a function of the softness parameter = hydrodynamic pressure/elastic stiffness = surface deflection/gap thickness which characterizes the fluid-induced deformation of the interface. The corresponding cases for a spherical slider are treated using scaling concepts.Comment: 61 pages, 20 figures, 2 tables, submitted to Physics of Fluid

    Dynamics of Fluid Vesicles in Oscillatory Shear Flow

    Full text link
    The dynamics of fluid vesicles in oscillatory shear flow was studied using differential equations of two variables: the Taylor deformation parameter and inclination angle θ\theta. In a steady shear flow with a low viscosity ηin\eta_{\rm {in}} of internal fluid, the vesicles exhibit steady tank-treading motion with a constant inclination angle θ0\theta_0. In the oscillatory flow with a low shear frequency, θ\theta oscillates between ±θ0\pm \theta_0 or around θ0\theta_0 for zero or finite mean shear rate γ˙m\dot\gamma_{\rm m}, respectively. As shear frequency fγf_{\gamma} increases, the vesicle oscillation becomes delayed with respect to the shear oscillation, and the oscillation amplitude decreases. At high fγf_{\gamma} with γ˙m=0\dot\gamma_{\rm m}=0, another limit-cycle oscillation between θ0π\theta_0-\pi and θ0-\theta_0 is found to appear. In the steady flow, θ\theta periodically rotates (tumbling) at high ηin\eta_{\rm {in}}, and θ\theta and the vesicle shape oscillate (swinging) at middle ηin\eta_{\rm {in}} and high shear rate. In the oscillatory flow, the coexistence of two or more limit-cycle oscillations can occur for low fγf_{\gamma} in these phases. For the vesicle with a fixed shape, the angle θ\theta rotates back to the original position after an oscillation period. However, it is found that a preferred angle can be induced by small thermal fluctuations.Comment: 11 pages, 13 figure

    3D printing of twisting and rotational bistable structures with tuning elements

    Get PDF
    Three-dimensional (3D) printing is ideal for the fabrication of various customized 3D components with fine details and material-design complexities. However, most components fabricated so far have been static structures with fixed shapes and functions. Here we introduce bistability to 3D printing to realize highly-controlled, reconfigurable structures. Particularly, we demonstrate 3D printing of twisting and rotational bistable structures. To this end, we have introduced special joints to construct twisting and rotational structures without post-assembly. Bistability produces a well-defined energy diagram, which is important for precise motion control and reconfigurable structures. Therefore, these bistable structures can be useful for simplified motion control in actuators or for mechanical switches. Moreover, we demonstrate tunable bistable components exploiting shape memory polymers. We can readjust the bistability-energy diagram (barrier height, slope, displacement, symmetry) after printing and achieve tunable bistability. This tunability can significantly increase the use of bistable structures in various 3D-printed components

    Electrical Conductivity of Electrospun Polyaniline and Polyaniline-Blend Fibers and Mats

    Get PDF
    Submicrometer fibers of polyaniline (PAni) doped with (+)-camphor-10-sulfonic acid (HCSA) and blended with poly(methyl methacrylate) (PMMA) or poly(ethylene oxide) were electrospun over a range of compositions. Continuous, pure PAni fibers doped with HCSA were also produced by coaxial electrospinning and subsequent removal of the PMMA shell polymer. The electrical conductivities of both the fibers and the mats were characterized. The electrical conductivities of the fibers were found to increase exponentially with the weight percent of doped PAni in the fibers, with values as high as 50 ± 30 S/cm for as-electrospun fibers of 100% doped PAni and as high as 130 ± 40 S/cm upon further solid state drawing. These high electrical conductivities are attributed to the enhanced molecular orientation arising from extensional deformation in the electrospinning process and afterward during solid state drawing. A model is proposed that permits the calculation of mat conductivity as a function of fiber conductivity, mat porosity, and fiber orientation distribution; the results agree quantitatively with the independently measured mat conductivities.United States. Army Research Office (Institute for Soldier Nanotechnologies, Contract ARO W911NF-07-D- 0004
    corecore