107 research outputs found

    Longitudinal Analysis of Quality of Life, Clinical, Radiographic, Echocardiographic, and Laboratory Variables in Dogs with Preclinical Myxomatous Mitral Valve Disease Receiving Pimobendan or Placebo: The EPIC Study

    Get PDF
    Background: Changes in clinical variables associated with the administration of pimobendan to dogs with preclinical myxomatous mitral valve disease (MMVD) and cardiomegaly have not been described. Objectives: To investigate the effect of pimobendan on clinical variables and the relationship between a change in heart size and the time to congestive heart failure (CHF) or cardiac-related death (CRD) in dogs with MMVD and cardiomegaly. To determine whether pimobendan-treated dogs differ from dogs receiving placebo at onset of CHF. Animals: Three hundred and fifty-four dogs with MMVD and cardiomegaly. Materials and Methods: Prospective, blinded study with dogs randomized (ratio 1:1) to pimobendan (0.4-0.6 mg/kg/d) or placebo. Clinical, laboratory, and heart-size variables in both groups were measured and compared at different time points (day 35 and onset of CHF) and over the study duration. Relationships between short-term changes in echocardiographic variables and time to CHF or CRD were explored. Results: At day 35, heart size had reduced in the pimobendan group:median change in (Delta) LVIDDN -0.06 (IQR:-0.15 to + 0.02), P < 0.0001, and LA:Ao -0.08 (IQR:-0.23 to + 0.03), P < 0.0001. Reduction in heart size was associated with increased time to CHF or CRD. Hazard ratio for a 0.1 increase in Delta LVIDDN was 1.26, P = 0.0003. Hazard ratio for a 0.1 increase in Delta LA:Ao was 1.14, P = 0.0002. At onset of CHF, groups were similar. Conclusions and Clinical Importance: Pimobendan treatment reduces heart size. Reduced heart size is associated with improved outcome. At the onset of CHF, dogs treated with pimobendan were indistinguishable from those receiving placebo

    Effect of Pimobendan in Dogs with Preclinical Myxomatous Mitral Valve Disease and Cardiomegaly: The EPIC Study - A Randomized Clinical Trial

    Get PDF
    Background: Pimobendan is effective in treatment of dogs with congestive heart failure (CHF) secondary to myxomatous mitral valve disease (MMVD). Its effect on dogs before the onset of CHF is unknown. Hypothesis/Objectives: Administration of pimobendan (0.4-0.6 mg/kg/d in divided doses) to dogs with increased heart size secondary to preclinical MMVD, not receiving other cardiovascular medications, will delay the onset of signs of CHF, cardiac-related death, or euthanasia. Animals: 360 client-owned dogs with MMVD with left atrial-to-aortic ratio >= 1.6, normalized left ventricular internal diameter in diastole >= 1.7, and vertebral heart sum >10.5. Methods: Prospective, randomized, placebo-controlled, blinded, multicenter clinical trial. Primary outcome variable was time to a composite of the onset of CHF, cardiac-related death, or euthanasia. Results: Median time to primary endpoint was 1228 days (95% CI: 856-NA) in the pimobendan group and 766 days (95% CI: 667-875) in the placebo group (P = .0038). Hazard ratio for the pimobendan group was 0.64 (95% CI: 0.47-0.87) compared with the placebo group. The benefit persisted after adjustment for other variables. Adverse events were not different between treatment groups. Dogs in the pimobendan group lived longer (median survival time was 1059 days (95% CI: 952-NA) in the pimobendan group and 902 days (95% CI: 747-1061) in the placebo group) (P = .012). Conclusions and Clinical Importance: Administration of pimobendan to dogs with MMVD and echocardiographic and radiographic evidence of cardiomegaly results in prolongation of preclinical period and is safe and well tolerated. Prolongation of preclinical period by approximately 15 months represents substantial clinical benefit

    A Snapshot of CNVs in the Pig Genome

    Get PDF
    Recent studies of mammalian genomes have uncovered the extent of copy number variation (CNV) that contributes to phenotypic diversity, including health and disease status. Here we report a first account of CNVs in the pig genome covering part of the chromosomes 4, 7, 14, and 17 already sequenced and assembled. A custom tiling oligonucleotide array was used with a median probe spacing of 409 bp for screening 12 unrelated Duroc boars that are founders of a large family material. After a strict CNV calling pipeline, 37 copy number variable regions (CNVRs) across all four chromosomes were identified, with five CNVRs overlapping segmental duplications, three overlapping pig unigenes and one overlapping a RefSeq pig mRNA. This CNV snapshot analysis is the first of its kind in the porcine genome and constitutes the basis for a better understanding of porcine phenotypes and genotypes with the prospect of identifying important economic traits

    Distinct Cytoplasmic and Nuclear Functions of the Stress Induced Protein DDIT3/CHOP/GADD153

    Get PDF
    DDIT3, also known as GADD153 or CHOP, encodes a basic leucine zipper transcription factor of the dimer forming C/EBP family. DDIT3 is known as a key regulator of cellular stress response, but its target genes and functions are not well characterized. Here, we applied a genome wide microarray based expression analysis to identify DDIT3 target genes and functions. By analyzing cells carrying tamoxifen inducible DDIT3 expression constructs we show distinct gene expression profiles for cells with cytoplasmic and nuclear localized DDIT3. Of 175 target genes identified only 3 were regulated by DDIT3 in both cellular localizations. More than two thirds of the genes were downregulated, supporting a role for DDIT3 as a dominant negative factor that could act by either cytoplasmic or nuclear sequestration of dimer forming transcription factor partners. Functional annotation of target genes showed cell migration, proliferation and apoptosis/survival as the most affected categories. Cytoplasmic DDIT3 affected more migration associated genes, while nuclear DDIT3 regulated more cell cycle controlling genes. Cell culture experiments confirmed that cytoplasmic DDIT3 inhibited migration, while nuclear DDIT3 caused a G1 cell cycle arrest. Promoters of target genes showed no common sequence motifs, reflecting that DDIT3 forms heterodimers with several alternative transcription factors that bind to different motifs. We conclude that expression of cytoplasmic DDIT3 regulated 94 genes. Nuclear translocation of DDIT3 regulated 81 additional genes linked to functions already affected by cytoplasmic DDIT3. Characterization of DDIT3 regulated functions helps understanding its role in stress response and involvement in cancer and degenerative disorders

    Identification and structural characterization of FYVE domain-containing proteins of Arabidopsis thaliana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>FYVE domains have emerged as membrane-targeting domains highly specific for phosphatidylinositol 3-phosphate (PtdIns(3)<it>P</it>). They are predominantly found in proteins involved in various trafficking pathways. Although FYVE domains may function as individual modules, dimers or in partnership with other proteins, structurally, all FYVE domains share a fold comprising two small characteristic double-stranded β-sheets, and a C-terminal α-helix, which houses eight conserved Zn<sup>2+ </sup>ion-binding cysteines. To date, the structural, biochemical, and biophysical mechanisms for subcellular targeting of FYVE domains for proteins from various model organisms have been worked out but plant FYVE domains remain noticeably under-investigated.</p> <p>Results</p> <p>We carried out an extensive examination of all <it>Arabidopsis </it>FYVE domains, including their identification, classification, molecular modeling and biophysical characterization using computational approaches. Our classification of fifteen <it>Arabidopsis </it>FYVE proteins at the outset reveals unique domain architectures for FYVE containing proteins, which are not paralleled in other organisms. Detailed sequence analysis and biophysical characterization of the structural models are used to predict membrane interaction mechanisms previously described for other FYVE domains and their subtle variations as well as novel mechanisms that seem to be specific to plants.</p> <p>Conclusions</p> <p>Our study contributes to the understanding of the molecular basis of FYVE-based membrane targeting in plants on a genomic scale. The results show that FYVE domain containing proteins in plants have evolved to incorporate significant differences from those in other organisms implying that they play a unique role in plant signaling pathways and/or play similar/parallel roles in signaling to other organisms but use different protein players/signaling mechanisms.</p

    How to Evaluate the Quality of Airborne Laser-Scanning Data

    No full text
    The discussion on the quality of digital elevation models form airborne laser scanner was dominated by the proof of vertical and horizontal accuracy. If the accuracy criteria were verified by ground control points, the evidence of high quality was produced. Based on experiences in projects for the Swiss Federal Office of Topography and according to the lidar requirements formulated by the US American Federal Emergency and Mapping Agency (FEMA) the interpretation of quality must change. Six different quality indicators are described as starting point for enhanced specification of laser data sets. Indicators are worthless if they do not contain a level of acceptance; for each indicator a proposal is discussed. With the help of the more precise requirements and specifications the quality evaluation is simplified. A common understanding of the quality between contractual partners is mandatory for efficient and effective lidar projects.ISSN:1682-1750ISSN:2194-9034ISSN:1682-177
    corecore