2 research outputs found
To what extent do the Classical Equations of Motion Determine the Quantization Scheme?
A simple example of one particle moving in a (1+1) space-time is considered.
As an example we take the harmonic oscillator. We confirm the statement that
the classical Equations of Motion do not determine at all the quantization
scheme. To this aim we use two inequivalent Lagrange functions, yielding
Euler-Lagrange Equations, having the same set of solutions. We present in
detail the calculations of both cases to emphasize the differences occuring
between them.Comment: LaTeX 20 page
The Schroedinger Problem, Levy Processes Noise in Relativistic Quantum Mechanics
The main purpose of the paper is an essentially probabilistic analysis of
relativistic quantum mechanics. It is based on the assumption that whenever
probability distributions arise, there exists a stochastic process that is
either responsible for temporal evolution of a given measure or preserves the
measure in the stationary case. Our departure point is the so-called
Schr\"{o}dinger problem of probabilistic evolution, which provides for a unique
Markov stochastic interpolation between any given pair of boundary probability
densities for a process covering a fixed, finite duration of time, provided we
have decided a priori what kind of primordial dynamical semigroup transition
mechanism is involved. In the nonrelativistic theory, including quantum
mechanics, Feyman-Kac-like kernels are the building blocks for suitable
transition probability densities of the process. In the standard "free" case
(Feynman-Kac potential equal to zero) the familiar Wiener noise is recovered.
In the framework of the Schr\"{o}dinger problem, the "free noise" can also be
extended to any infinitely divisible probability law, as covered by the
L\'{e}vy-Khintchine formula. Since the relativistic Hamiltonians
and are known to generate such laws, we focus on
them for the analysis of probabilistic phenomena, which are shown to be
associated with the relativistic wave (D'Alembert) and matter-wave
(Klein-Gordon) equations, respectively. We show that such stochastic processes
exist and are spatial jump processes. In general, in the presence of external
potentials, they do not share the Markov property, except for stationary
situations. A concrete example of the pseudodifferential Cauchy-Schr\"{o}dinger
evolution is analyzed in detail. The relativistic covariance of related waveComment: Latex fil