9 research outputs found

    Quantum Critical Behavior in Kondo Systems

    Full text link
    This article briefly reviews three topics related to the quantum critical behavior of certain heavy-fermion systems. First, we summarize an extended dynamical mean-field theory for the Kondo lattice, which treats on an equal footing the quantum fluctuations associated with the Kondo and RKKY couplings. The dynamical mean-field equations describe an effective Kondo impurity model with an additional coupling to vector bosons. Two types of quantum phase transition appear to be possible within this approach---the first a conventional spin-density-wave transition, the second driven by local physics. For the second type of transition to be realized, the effective impurity model must have a quantum critical point exhibiting an anomalous local spin susceptibility. In the second part of the paper, such a critical point is shown to occur in two variants of the Kondo impurity problem. Finally, we propose an operational test for the existence of quantum critical behavior driven by local physics. Neutron scattering results suggest that CeCu6−x_{6-x}Aux_x passes this test.Comment: 6 pages, 4 eps figures, REVTeX (epsf style

    Kosterlitz-Thouless Transition and Short Range Spatial Correlations in an Extended Hubbard Model

    Full text link
    We study the competition between intersite and local correlations in a spinless two-band extended Hubbard model by taking an alternative limit of infinite dimensions. We find that the intersite density fluctuations suppress the charge Kondo energy scale and lead to a Fermi liquid to non-Fermi liquid transition for repulsive on-site density-density interactions. In the absence of intersite interactions, this transition reduces to the known Kosterlitz-Thouless transition. We show that a new line of non-Fermi liquid fixed points replace those of the zero intersite interaction problem.Comment: 11 pages, 2 figure

    Spatial Correlations in Dynamical Mean Field Theory

    Full text link
    We further develop an extended dynamical mean field approach introduced earlier. It goes beyond the standard D=∞D=\infty dynamical mean field theory by incorporating quantum fluctuations associated with intersite (RKKY-like) interactions. This is achieved by scaling the intersite interactions to the same power in 1/D as that for the kinetic terms. In this approach, a correlated lattice problem is reduced to a single-impurity Anderson model with additional self-consistent bosonic baths. Here, we formulate the approach in terms of perturbation expansions. We show that the two-particle vertex functions are momentum-dependent, while the single-particle self-energy remains local. In spite of this, the approach is conserving. Finally, we also determine the form of a momentum-dependent dynamical susceptibility; the resulting expression relates it to the corresponding Weiss field, local correlation function and (momentum-dependent) intersite coupling.Comment: 28 pages, REVTEX, 8 figures include

    Locally critical quantum phase transitions in strongly correlated metals

    Full text link
    When a metal undergoes a continuous quantum phase transition, non-Fermi liquid behaviour arises near the critical point. It is standard to assume that all low-energy degrees of freedom induced by quantum criticality are spatially extended, corresponding to long-wavelength fluctuations of the order parameter. However, this picture has been contradicted by recent experiments on a prototype system: heavy fermion metals at a zero-temperature magnetic transition. In particular, neutron scattering from CeCu6−x_{6-x}Aux_x has revealed anomalous dynamics at atomic length scales, leading to much debate as to the fate of the local moments in the quantum-critical regime. Here we report our theoretical finding of a locally critical quantum phase transition in a model of heavy fermions. The dynamics at the critical point are in agreement with experiment. We also argue that local criticality is a phenomenon of general relevance to strongly correlated metals, including doped Mott insulators.Comment: 20 pages, 3 figures; extended version, to appear in Natur

    From mixed valence to the Kondo lattice regime

    Full text link
    Many heavy fermion materials are known to crossover from the Kondo lattice regime to the mixed-valent regime or vice-versa as a function of pressure or doping. We study this crossover theoretically by employing the periodic Anderson model within the framework of the dynamical mean field theory. Changes occurring in the dynamics and transport across this crossover are highlighted. As the valence is decreased (increased) relative to the Kondo lattice regime, the Kondo resonance broadens significantly, while the lower (upper) Hubbard band moves closer to the Fermi level. The resistivity develops a two peak structure in the mixed valent regime: a low temperature coherence peak and a high temperature 'Hubbard band' peak. These two peaks merge yielding a broad shallow maximum upon decreasing the valence further. The optical conductivity, likewise exhibits an unusual absorption feature (shoulder) in the deep mid-infrared region, which grows in intensity with decreasing valence. The involvement of the Hubbard bands in dc transport, and of the effective f-level in the optical conductivity are shown to be responsible for the anomalous transport properties. A two-band hybridization-gap model, which neglects incoherent effects due to many-body scattering, commonly employed to understand the optical response in these materials is shown to be inadequate, especially in the mixed-valent regime. Comparison of theory with experiment carried out for (a) dc resistivities of CeRhIn5, Ce2Ni3Si5, CeFeGe3 and YbIr2Si2; (b) pressure dependent resistivity of YbInAu2 and CeCu6; and (c) optical conductivity measurements in YbIr2Si2 yields excellent agreement.Comment: 24 pages,12 figures,accepted in J.Phys.: Condens. Matte

    Local fluctuations in quantum critical metals

    Full text link
    We show that spatially local, yet low-energy, fluctuations can play an essential role in the physics of strongly correlated electron systems tuned to a quantum critical point. A detailed microscopic analysis of the Kondo lattice model is carried out within an extended dynamical mean-field approach. The correlation functions for the lattice model are calculated through a self-consistent Bose-Fermi Kondo problem, in which a local moment is coupled both to a fermionic bath and to a bosonic bath (a fluctuating magnetic field). A renormalization-group treatment of this impurity problem--perturbative in ϵ=1−γ\epsilon=1-\gamma, where γ\gamma is an exponent characterizing the spectrum of the bosonic bath--shows that competition between the two couplings can drive the local-moment fluctuations critical. As a result, two distinct types of quantum critical point emerge in the Kondo lattice, one being of the usual spin-density-wave type, the other ``locally critical.'' Near the locally critical point, the dynamical spin susceptibility exhibits ω/T\omega/T scaling with a fractional exponent. While the spin-density-wave critical point is Gaussian, the locally critical point is an interacting fixed point at which long-wavelength and spatially local critical modes coexist. A Ginzburg-Landau description for the locally critical point is discussed. It is argued that these results are robust, that local criticality provides a natural description of the quantum critical behavior seen in a number of heavy-fermion metals, and that this picture may also be relevant to other strongly correlated metals.Comment: 20 pages, 12 figures; typos in figure 3 and in the main text corrected, version as publishe
    corecore