16,601 research outputs found
Many-body localization in incommensurate models with a mobility edge
We review the physics of many-body localization in models with incommensurate
potentials. In particular, we consider one-dimensional quasiperiodic models
with single-particle mobility edges. Although a conventional perspective
suggests that delocalized states act as a thermalizing bath for the localized
states in the presence of of interactions, there is evidence that such systems
can display non-ergodicity. This is in part due to the fact that the
delocalized states do not have any kind of protection due to symmetry or
topology and are thus susceptible to localization. A study of non-interacting
incommensurate models shows that they admit extended, partially extended, and
fully localized many-body states. These models cannot thermalize dynamically
and remain localized upon the introduction of interactions. In particular, for
a certain range of energy, the system can host a non-ergodic extended (i.e.
metallic) phase in which the energy eigenstates violate the eigenstate
thermalization hypothesis (ETH) but the entanglement entropy obeys volume-law
scaling. The level statistics and entanglement growth also indicate the lack of
ergodicity in these models. The phenomenon of localization and non-ergodicity
in a system with interactions despite the presence of single-particle
delocalized states is closely related to the so-called "many-body proximity
effect" and can also be observed in models with disorder coupled to systems
with delocalized degrees of freedom. Many-body localization in systems with
incommensurate potentials (without single-particle mobility edges) have been
realized experimentally, and we show how this can be modified to study the the
effects of such mobility edges. Demonstrating the failure of thermalization in
the presence of a single-particle mobility edge in the thermodynamic limit
would indicate a more robust violation of the ETH.Comment: 17 pages, 14 figures, Review articl
Fe-doping induced superconductivity in charge-density-wave system 1T-TaS2
We report the interplay between charge-density-wave (CDW) and
superconductivity of 1-FeTaS ()
single crystals. The CDW order is gradually suppressed by Fe-doping,
accompanied by the disappearance of pseudogap/Mott-gap as shown by the density
functional theory (DFT) calculations. The superconducting state develops at low
temperatures within the CDW state for the samples with the moderate doping
levels. The superconductivity strongly depends on within a narrow range,
and the maximum superconducting transition temperature is 2.8 K as . We
propose that the induced superconductivity and CDW phases are separated in real
space. For high doping level (), the Anderson localization (AL) state
appears, resulting in a large increase of resistivity. We present a complete
electronic phase diagram of 1-FeTaS system that shows a
dome-like
High-Q exterior whispering gallery modes in a metal-coated microresonator
We propose a kind of plasmonic whispering gallery modes highly localized on
the exterior surface of a metal-coated microresonator. This exterior (EX)
surface mode possesses high quality factors at room temperature, and can be
efficiently excited by a tapered fiber. The EX mode can couple to an interior
(IN) mode and this coupling produces a strong anti-crossing behavior, which not
only allows conversion of IN to EX modes, but also forms a long-lived
anti-symmetric mode. As a potential application, the EX mode could be used for
a biosensor with a sensitivity high up to 500 nm per refraction index unit, a
large figure of merit, and a wide detection range
Multi-Scale Human Pose Tracking in 2D Monocular Images
In this paper we address the problem of tracking human poses in multiple perspective scales in 2D monocular images/videos. In most state-of-the-art 2D tracking approaches, the issue of scale variation is rarely discussed. However in reality, videos often contain human motion with dynamically changed scales. In this paper we pro-pose a tracking framework that can deal with this problem. A scale checking and adjusting algorithm is pro-posed to automatically adjust the perspective scales during the tracking process. Two metrics are proposed for detecting and adjusting the scale change. One metric is from the height value of the tracked target, which is suitable for some sequences where the tracked target is upright and with no limbs stretching. The other metric employed in this algorithm is more generic, which is invariant to motion types. It is the ratio between the pixel counts of the target silhouette and the detected bounding boxes of the target body. The proposed algorithm is tested on the publicly available datasets (HumanEva). The experimental results show that our method demon-strated higher accuracy and efficiency compared to state-of-the-art approache
- …