128 research outputs found

    The last glacial-interglacial cycle in Lake Ohrid (Macedonia/Albania): testing diatom response to climate

    Get PDF
    Lake Ohrid is a site of global importance for palaeoclimate research. This study presents results of diatom analysis of a ca. 136 ka sequence, Co1202, from the northeast of the lake basin. It offers the opportunity to test diatom response across two glacial-interglacial transitions and within the Last Glacial, while setting up taxonomic protocols for future research. The results are outstanding in demonstrating the sensitivity of diatoms to climate change, providing proxy evidence for temperature change marked by glacial-interglacial shifts between the dominant planktonic taxa, Cyclotella fottii and C. ocellata, and exact correlation with geochemical proxies to mark the start of the Last Interglacial at ca. 130 ka. Importantly, diatoms show much stronger evidence in this site for warming during MIS3 than recorded in other productivity-related proxies, peaking at ca. 39 ka, prior to the extreme conditions of the Last Glacial maximum. In the light of the observed patterns, and from the results of analysis of early Holocene sediments from a second core, Lz1120, the lack of a response to Late Glacial and early Holocene warming from ca. 15-7.4 ka suggests the Co1202 sequence may be compromised during this phase. After ca. 7.4 ka, there is evidence for enhanced nutrient enrichment compared to the Last Interglacial, following by a post-Medieval cooling trend. Taxonomically, morphological variability in C. fottii shows no clear trends linked to climate, but an intriguing change in central area morphology occurs after ca. 48.7 ka, coincident with a tephra layer. In contrast, C. ocellata shows morphological variation in the number of ocelli between interglacials, suggesting climatically-forced variation or evolutionary selection pressure. The application of a simple dissolution index does not track preservation quality very effectively, underlining the importance of diatom concentration data in future studies

    Complexity of diatom response to Lateglacial and Holocene climate and environmental change in ancient, deep and oligotrophic Lake Ohrid (Macedonia and Albania)

    Get PDF
    © Author(s) 2016. Lake Ohrid (Macedonia and Albania) is a rare example of a deep, ancient Mediterranean lake and is a key site for palaeoclimate research in the northeastern Mediterranean region. This study conducts the analysis of diatoms as a proxy for Lateglacial and Holocene climate and environmental change in Lake Ohrid at a higher resolution than in previous studies. While Lake Ohrid has the potential to be sensitive to water temperature change, the data demonstrate a highly complex diatom response, probably comprising a direct response to temperature-induced lake productivity in some phases and an indirect response to temperaturerelated lake stratification or mixing and epilimnetic nutrient availability in others. The data also demonstrate the possible influence of physical limnological (e.g. the influence of wind stress on stratification or mixing) and chemical processes (e.g. the influence of catchment dynamics on nutrient input) in mediating the complex response of diatoms. During the Lateglacial (ca. 12 300-11 800 cal yr BP), the low-diversity dominance of hypolimnetic Cyclotella fottii indicates low lake productivity, linked to low water temperature. Although the subsequent slight increase in small, epilimnetic C. minuscula during the earliest Holocene (ca. 11 800-10 600 cal yr BP) suggests climate warming and enhanced stratification, diatom concentration remains as low as during the Lateglacial, suggesting that water temperature increase was muted across this major transition. The early Holocene (ca. 10 600-8200 cal yr BP) is characterised by a sustained increase in epilimnetic taxa, with mesotrophic C. ocellata indicating high water-temperature-induced productivity between ca. 10 600-10 200 cal yr BP and between ca. 9500-8200 cal yr BP and with C. minuscula in response to low nutrient availability in the epilimnion between ca. 10 200-9500 cal yr BP. During the middle Holocene (ca. 8200-2600 cal yr BP), when sedimentological and geochemical proxies provide evidence for maximum Holocene water temperature, anomalously low C. ocellata abundance is probably a response to epilimnetic nutrient limitation, almost mimicking the Lateglacial flora apart from the occurrence of mesotrophic Stephanodiscus transylvanicus in the hypolimnion. During the late Holocene (ca. 2600 cal yr BP-present), high abundance and fluctuating composition of epilimnetic taxa are probably a response more to enhanced anthropogenic nutrient input, particularly nitrogen enrichment, than to climate. Overall, the data indicate that previous assumptions concerning the linearity of diatom response in this deep, ancient lake are invalid, and multi-proxy analysis is essential to improve understanding of palaeolimnological dynamics in future research on the long, Quaternary sequence

    Complexity of diatom response to Lateglacial and Holocene climate and environmental change in ancient, deep and oligotrophic Lake Ohrid (Macedonia and Albania)

    Get PDF
    Lake Ohrid (Macedonia and Albania) is a rare example of a deep, ancient Mediterranean lake and is a key site for palaeoclimate research in the northeastern Mediterranean region. This study conducts the analysis of diatoms as a proxy for Lateglacial and Holocene climate and environmental change in Lake Ohrid at a higher resolution than in previous studies. While Lake Ohrid has the potential to be sensitive to water temperature change, the data demonstrate a highly complex diatom response, probably comprising a direct response to temperature-induced lake productivity in some phases and an indirect response to temperature-related lake stratification or mixing and epilimnetic nutrient availability in others. The data also demonstrate the possible influence of physical limnological (e.g. the influence of wind stress on stratification or mixing) and chemical processes (e.g. the influence of catchment dynamics on nutrient input) in mediating the complex response of diatoms. During the Lateglacial (ca. 12 300-11 800 cal yr BP), the low-diversity dominance of hypolimnetic Cyclotella fottii indicates low lake productivity, linked to low water temperature. Although the subsequent slight increase in small, epilimnetic C. minuscula during the earliest Holocene (ca. 11 800-10 600 cal yr BP) suggests climate warming and enhanced stratification, diatom concentration remains as low as during the Lateglacial, suggesting that water temperature increase was muted across this major transition. The early Holocene (ca. 10 600-8200 cal yr BP) is characterised by a sustained increase in epilimnetic taxa, with mesotrophic C. ocellata indicating high water-temperature-induced productivity between ca. 10 600-10 200 cal yr BP and between ca. 9500-8200 cal yr BP and with C. minuscula in response to low nutrient availability in the epilimnion between ca. 10 200-9500 cal yr BP. During the middle Holocene (ca. 8200-2600 cal yr BP), when sedimentological and geochemical proxies provide evidence for maximum Holocene water temperature, anomalously low C. ocellata abundance is probably a response to epilimnetic nutrient limitation, almost mimicking the Lateglacial flora apart from the occurrence of mesotrophic Stephanodiscus transylvanicus in the hypolimnion. During the late Holocene (ca. 2600 cal yr BP-present), high abundance and fluctuating composition of epilimnetic taxa are probably a response more to enhanced anthropogenic nutrient input, particularly nitrogen enrichment, than to climate. Overall, the data indicate that previous assumptions concerning the linearity of diatom response in this deep, ancient lake are invalid, and multi-proxy analysis is essential to improve understanding of palaeolimnological dynamics in future research on the long, Quaternary sequence

    Tunneling in quantum cosmology: numerical study of particle creation

    Full text link
    We consider a minisuperspace model for a closed universe with small and positive cosmological constant, filled with a massive scalar field conformally coupled to gravity. In the quantum version of this model, the universe may undergo a tunneling transition through an effective barrier between regions of small and large scale factor. We solve numerically the minisuperspace Wheeler--De Witt equation with tunneling boundary conditions for the wave function of the universe, and find that tunneling in quantum cosmology is quite different from that in quantum mechanics. Namely, the matter degree of freedom gets excited under the barrier, provided its interaction with the scale factor is not too weak, and makes a strong back reaction onto tunneling. In the semiclassical limit of small values of cosmological constant, the matter energy behind the barrier is close to the height of the barrier: the system ``climbs up'' the barrier, and then evolves classically from its top. These features are even more pronounced for inhomogeneous modes of matter field. Extrapolating to field theory we thus argue that high momentum particles are copiously created in the tunneling process. Nevertheless, we find empirical evidence for the semiclassical-type scaling with the cosmological constant of the wave function under and behind the barrier.Comment: 29 pages, 17 figure

    Quantum treatment of neutrino in background matter

    Full text link
    Motivated by the need of elaboration of the quantum theory of the spin light of neutrino in matter (SLνSL\nu), we have studied in more detail the exact solutions of the Dirac equation for neutrinos moving in the background matter. These exact neutrino wavefunctions form a basis for a rather powerful method of investigation of different neutrino processes in matter, which is similar to the Furry representation of quantum electrodynamics in external fields. Within this method we also derive the corresponding Dirac equation for an electron moving in matter and consider the electromagnetic radiation ("spin light of electron in matter", SLeSLe) that can be emitted by the electron in this case.Comment: 10 pages, in: Proceedings of QFEXT'05 (The Seventh Workshop on Quantum Field Theory under the Influence of External Conditions, IEEC, CSIC and University of Barcelona, Barcelona, Catalonia, Spain, 5-9 September 2005.), ed. by Emilio Elizalde and Sergei Odintsov; published in Journal of Physics

    One-loop corrections to the metastable vacuum decay

    Full text link
    We evaluate the one-loop prefactor in the false vacuum decay rate in a theory of a self interacting scalar field in 3+1 dimensions. We use a numerical method, established some time ago, which is based on a well-known theorem on functional determinants. The proper handling of zero modes and of renormalization is discussed. The numerical results in particular show that quantum corrections become smaller away from the thin-wall case. In the thin-wall limit the numerical results are found to join into those obtained by a gradient expansion.Comment: 31 pages, 7 figure

    Wave function of the Universe in the early stage of its evolution

    Full text link
    In quantum cosmological models, constructed in the framework of Friedmann-Robertson-Walker metrics, a nucleation of the Universe with its further expansion is described as a tunneling transition through an effective barrier between regions with small and large values of the scale factor aa at non-zero (or zero) energy. The approach for describing this tunneling consists of constructing a wave function satisfying an appropriate boundary condition. There are various ways for defining the boundary condition that lead to different estimates of the barrier penetrability and the tunneling time. In order to describe the escape from the tunneling region as accurately as possible and to construct the total wave function on the basis of its two partial solutions unambiguously, we use the tunneling boundary condition that the total wave function must represent only the outgoing wave at the point of escape from the barrier, where the following definition for the wave is introduced: the wave is represented by the wave function whose modulus changes minimally under a variation of the scale factor aa. We construct a new method for a direct non-semiclassical calculation of the total stationary wave function of the Universe, analyze the behavior of this wave function in the tunneling region, near the escape point and in the asymptotic region, and estimate the barrier penetrability. We observe oscillations of modulus of wave function in the external region starting from the turning point which decrease with increasing of aa and which are not shown in semiclassical calculations. The period of such an oscillation decreases uniformly with increasing aa and can be used as a fully quantum dynamical characteristic of the expansion of the Universe.Comment: 19 pages, 21 files for 10 EPS figures, LaTeX svjour style. The Sec.2 (formalism of Wheeler-De Witt equation) is reduced. In Sec.3.1 definition of the outgoing wave from barrier is defined more accurately. In Sec.4.1 semiclassical calculations of wavew function and penetrability are performed and comparison with results in fully quantum approach is adde

    Shapes of leading tunnelling trajectories for single-electron molecular ionization

    Full text link
    Based on the geometrical approach to tunnelling by P.D. Hislop and I.M. Sigal [Memoir. AMS 78, No. 399 (1989)], we introduce the concept of a leading tunnelling trajectory. It is then proven that leading tunnelling trajectories for single-active-electron models of molecular tunnelling ionization (i.e., theories where a molecular potential is modelled by a single-electron multi-centre potential) are linear in the case of short range interactions and "almost" linear in the case of long range interactions. The results are presented on both the formal and physically intuitive levels. Physical implications of the obtained results are discussed.Comment: 14 pages, 5 figure

    Resonant structure of space-time of early universe

    Full text link
    A new fully quantum method describing penetration of packet from internal well outside with its tunneling through the barrier of arbitrary shape used in problems of quantum cosmology, is presented. The method allows to determine amplitudes of wave function, penetrability TbarT_{\rm bar} and reflection RbarR_{\rm bar} relatively the barrier (accuracy of the method: ∣Tbar+Rbar−1∣<1⋅10−15|T_{\rm bar}+R_{\rm bar}-1| < 1 \cdot 10^{-15}), coefficient of penetration (i.e. probability of the packet to penetrate from the internal well outside with its tunneling), coefficient of oscillations (describing oscillating behavior of the packet inside the internal well). Using the method, evolution of universe in the closed Friedmann--Robertson--Walker model with quantization in presence of positive cosmological constant, radiation and component of generalize Chaplygin gas is studied. It is established (for the first time): (1) oscillating dependence of the penetrability on localization of start of the packet; (2) presence of resonant values of energy of radiation EradE_{\rm rad}, at which the coefficient of penetration increases strongly. From analysis of these results it follows: (1) necessity to introduce initial condition into both non-stationary, and stationary quantum models; (2) presence of some definite values for the scale factor aa, where start of expansion of universe is the most probable; (3) during expansion of universe in the initial stage its radius is changed not continuously, but passes consequently through definite discrete values and tends to continuous spectrum in latter time.Comment: 18 pages, 14 figures, 4 table

    Particle creation in a tunneling universe

    Get PDF
    An expanding closed universe filled with radiation can either recollapse or tunnel to the regime of unbounded expansion, if the cosmological constant is nonzero. We re-examine the question of particle creation during tunneling, with the purpose of resolving a long-standing controversy. Using a perturbative superspace model with a conformally coupled massless scalar field, which is known to give no particle production, we explicitly show that the breakdown of the semiclassical approximation and the ``catastrophic particle production'' claimed earlier in the literature are due to an inappropriate choice of the initial quantum state prior to the tunneling.Comment: 21 pages, 3 embedded figures, RevTeX
    • …
    corecore