1,130 research outputs found
Opportunities for Electron Microscopy in Space Radiation Biology
Densely ionizing, particulate radiations in outer space are likely to cause to mammalian tissues biological damage that is particularly amenable to examination by the techniques of electron microscopy. This situation arises primarily from the fact that once the density of ionization along the particle track exceeds a certain value, small discrete lesions involving many adjacent cells may be caused in organized tissues. Tissue damage produced by ionization densities below the critical value also afford opportunities for electron microscopic evaluation, as is shown by the damage produced in optic and proximate tissues of the New Zealand white rabbit in terrestrial experiments. Late radiation sequelae in nondividing, or terminally differentiating, tissues, and in stem cell populations, are of special importance in these regards.
It is probable that evaluations of the hazards posed to astronauts by galactic particulate radiations during prolonged missions in outer space will not be complete without adequate electron microscopic evaluation of the damage those radiations cause to organized tissues
Coulomb crystallization in expanding laser-cooled neutral plasmas
We present long-time simulations of expanding ultracold neutral plasmas,
including a full treatment of the strongly coupled ion dynamics. Thereby, the
relaxation dynamics of the expanding laser-cooled plasma is studied, taking
into account elastic as well as inelastic collisions. It is demonstrated that,
depending on the initial conditions, the ionic component of the plasma may
exhibit short-range order or even a superimposed long-range order resulting in
concentric ion shells. In contrast to ionic plasmas confined in traps, the
shell structures are built up from the center of the plasma cloud rather than
from the periphery
Use of Lagrangian simulations to hindcast the geographical position of propagule release zones in a Mediterranean coastal fish
The study of organism dispersal is fundamental for elucidating patterns of connectivity between populations, thus crucial for the design of effective protection and management strategies. This is especially challenging in the case of coastal fish, for which information on egg release zones (i.e. spawning grounds) is often lacking. Here we assessed the putative location of egg release zones of the saddled sea bream (Oblada melanura) along the south-eastern coast of Spain in 2013. To this aim, we hindcasted propagule (egg and larva) dispersal using Lagrangian simulations, fed with species-specific information on early life history traits (ELTs), with two approaches: 1) back-tracking and 2) comparing settler distribution obtained from simulations to the analogous distribution resulting from otolith chemical analysis. Simulations were also used to assess which factors contributed the most to dispersal distances. Back-tracking simulations indicated that both the northern sector of the Murcia region and some traits of the North-African coast were hydrodynamically suitable to generate and drive the supply of larvae recorded along the coast of Murcia in 2013. With the second approach, based on the correlation between simulation outputs and field results (otolith chemical analysis), we found that the oceanographic characteristics of the study area could have determined the pattern of settler distribution recorded with otolith analysis in 2013 and inferred the geographical position of main O. melanura spawning grounds along the coast. Dispersal distance was found to be significantly affected by the geographical position of propagule release zones. The combination of methods used was the first attempt to assess the geographical position of propagule release zones in the Mediterranean Sea for O. melanura, and can represent a valuable approach for elucidating dispersal and connectivity patterns in other coastal species
All-optical generation and photoassociative probing of sodium Bose-Einstein condensates
We demonsatrate an all optical technique to evaporatively produce sodium
Bose-Einstein condensates (BEC). We use a crossed-dipole trap formed from light
near 1060 nm, and a simple ramp of the intensity to force evaporation. In
addition, we introduce photoassociation as diagnostic of the trap loading
process, and show that it can be used to detect the onset of Bose-Einstein
condensation. Finally, we demonstrate the straightforward production of
multiple traps with condensates using this technique, and that some control
over the spinor state of the BEC is achieved by positioning the trap as well.Comment: 8 pages, 10 figure
Sub-Natural-Linewidth Quantum Interference Features Observed in Photoassociation of a Thermal Gas
By driving photoassociation transitions we form electronically excited
molecules (Na) from ultra-cold (50-300 K) Na atoms. Using a second
laser to drive transitions from the excited state to a level in the molecular
ground state, we are able to split the photoassociation line and observe
features with a width smaller than the natural linewidth of the excited
molecular state. The quantum interference which gives rise to this effect is
analogous to that which leads to electromagnetically induced transparency in
three level atomic systems, but here one of the ground states is a
pair of free atoms while the other is a bound molecule. The linewidth is
limited primarily by the finite temperature of the atoms.Comment: 4 pages, 5 figure
Narrow-line magneto-optical cooling and trapping of strongly magnetic atoms
Laser cooling on weak transitions is a useful technique for reaching
ultracold temperatures in atoms with multiple valence electrons. However, for
strongly magnetic atoms a conventional narrow-line magneto-optical trap (MOT)
is destabilized by competition between optical and magnetic forces. We overcome
this difficulty in Er by developing an unusual narrow-line MOT that balances
optical and magnetic forces using laser light tuned to the blue side of a
narrow (8 kHz) transition. The trap population is spin-polarized with
temperatures reaching below 2 microkelvin. Our results constitute an
alternative method for laser cooling on weak transitions, applicable to
rare-earth-metal and metastable alkaline earth elements.Comment: To appear in Phys. Rev. Lett. 4 pages, 5 figure
Effects of a physiotherapy and occupational therapy intervention on mobility and activity in care home residents: a cluster randomised controlled trial
Objective To compare the clinical effectiveness of a programme of physiotherapy and occupational therapy with standard care in care home residents who have mobility limitations and are dependent in performing activities of daily living
Atomic density and temperature distributions in magneto-optical traps
A theoretical investigation into density, pressure, and temperature distributions in magneto-optical traps is presented. After a brief overview of the forces that arise from reradiation and absorption, a condition that the absorptive force be conservative is used to show that, if the temperature is uniform throughout the trap, any. density solutions to the force equations will not be physical. Further, consistent density solutions are unlikely to exist at all. In contrast, with a varying temperature reasonable solutions are demonstrated, with some restrictions. Doppler forces involved in ring-shaped trap structures are used to calculate orbit radii in racetrack geometry traps, and corrections to the present discrepancy between theoretical and experimental studies are discussed in the context of reradiation and diffusion
Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor
We have observed the ultraslow propagation of matched pulses in nondegenerate
four-wave mixing in a hot atomic vapor. Probe pulses as short as 70 ns can be
delayed by a tunable time of up to 40 ns with little broadening or distortion.
During the propagation, a probe pulse is amplified and generates a conjugate
pulse which is faster and separates from the probe pulse before getting locked
to it at a fixed delay. The precise timing of this process allows us to
determine the key coefficients of the susceptibility tensor. The presence of
gain in this system makes this system very interesting in the context of
all-optical information processing.Comment: 5 pages, 4 figure
The impact of starchy food structure on postprandial glycemic response and appetite: a systematic review with meta-analysis of randomized crossover trials
Background Starchy foods can have a profound effect on metabolism. The structural properties of starchy foods can affect their digestibility and postprandial metabolic responses, which in the long term may be associated with the risk of type 2 diabetes and obesity. Objectives This systematic review sought to evaluate the clinical evidence regarding the impact of the microstructures within starchy foods on postprandial glucose and insulin responses alongside appetite regulation. Methods A systematic search was performed in the PUBMED, Ovid Medicine, EMBASE, and Google Scholar databases for data published up to 18 January 2021. Data were extracted by 3 independent reviewers from randomized crossover trials (RCTs) that investigated the effect of microstructural factors on postprandial glucose, insulin, appetite-regulating hormone responses, and subjective satiety scores in healthy participants. Results We identified 745 potential articles, and 25 RCTs (n = 369 participants) met our inclusion criteria: 6 evaluated the amylose-to-amylopectin ratio, 6 evaluated the degree of starch gelatinization, 2 evaluated the degree of starch retrogradation, 1 studied starch–protein interactions, and 12 investigated cell and tissue structures. Meta-analyses showed that significant reductions in postprandial glucose and insulin levels was caused by starch with a high amylose content [standardized mean difference (SMD) = −0.64 mmol/L*min (95% CI: −0.83 to −0.46) and SMD = −0.81 pmol/L*min (95% CI: −1.07 to −0.55), respectively], less-gelatinized starch [SMD = −0.54 mmol/L*min (95% CI: −0.75 to −0.34) and SMD = −0.48 pmol/L*min (95% CI: −0.75 to −0.21), respectively], retrograded starch (for glucose incremental AUC; SMD = −0.46 pmol/L*min; 95% CI: −0.80 to −0.12), and intact and large particles [SMD = −0.43 mmol/L*min (95% CI: −0.58 to −0.28) and SMD = −0.63 pmol/L*min (95% CI: −0.86 to −0.40), respectively]. All analyses showed minor or moderate heterogeneity (I2 < 50%). Sufficient evidence was not found to suggest how these structural factors influence appetite. Conclusions The manipulation of microstructures in starchy food may be an effective way to improve postprandial glycemia and insulinemia in the healthy population. The protocol for this systematic review and meta-analysis was registered in the international prospective register of systematic reviews (PROSPERO) as CRD42020190873
- …